MATH 412 MIDTERM MAKEUP

BILLY BOB

1. Which of the polynomials below is irreducible in $\mathbb{Q}[x]$. If it is irreducible give a reason; if it is reducible give a factorization.
a. $x^{5}-4 x+22$

Solution:
b. $10-15 x+25 x^{2}-7 x^{4}$

Solution:
c. $x^{3}-24 x-5$

Solution:
2. Let $k \in \mathbb{Z}$ and let $f(x)=x^{9}+12 x^{5}-21 x+k$. Show that there are infinitely many integers k such that $f(x)$ is irreducible $\mathbb{Q}[x]$.
Solution:
3. Let I be an ideal of a ring R. The left annihilator of I is the set J, where

$$
J=\{s \in R: s a=0 \text { for every } a \in I\}
$$

Show that J is an ideal of R.

Solution:

4. Let R be a ring in which $x^{2}=x$ holds for every $x \in R$.
a. Show that $2 a=0$ for all $a \in R$. (Of course $2 a$ means $a+a$.)

Hint: $a+a=(a+a)^{2}$.
Solution:
b. Show R is commutative. Hint: $a+b=(a+b)^{2}$.

Solution:
5. Let H be a subgroup of a group G. Define a relation $a \sim b$ on G by

$$
a \sim b \text { if } a=b h \text { for some } h \in H
$$

a. Show that \sim is an equivalence relation on G.

Solution:

b. Let $a \in G$. Show that the block (block means equivalence class) of this equivalence relation containing a is $a H$. (Recall that $a H$ is defined as $\{a h: h \in H\}$.)

Solution:

c. Show that $|H|=|a H|$ by showing that map $f: H \rightarrow a H$ defined by $f(h)=a h$ is one-to-one and onto.
Solution:
d. Prove that if G is a finite group and H is a subgroup, then $|H|$ divides $|G|$. (This is known as Lagrange's Theorem).

Solution:

