MATH 412 MIDTERM MAKEUP

BILLY BOB

1. Which of the polynomials below is irreducible in $\mathbb{Q}[x]$. If it is irreducible give a reason; if it is reducible give a factorization. **a.** $x^5 - 4x + 22$

a.
$$x^5 - 4x + 22$$

Solution:

b.
$$10 - 15x + 25x^2 - 7x^4$$

Solution:

c.
$$x^3 - 24x - 5$$

- **2.** Let $k \in \mathbb{Z}$ and let $f(x) = x^9 + 12x^5 21x + k$. Show that there are infinitely many integers k such that f(x) is irreducible $\mathbb{Q}[x]$. Solution:
 - **3.** Let I be an ideal of a ring R. The *left annihilator* of I is the set J, where

$$J = \{ s \in R : sa = 0 \text{ for every } a \in I \}$$

Show that J is an ideal of R.

4. Let R be a ring in which $x^2 = x$ holds for every $x \in R$. **a.** Show that 2a = 0 for all $a \in R$. (Of course 2a means a + a.) **Hint:** $a + a = (a + a)^2$.

Solution:

b. Show R is commutative. **Hint:** $a + b = (a + b)^2$.

5. Let H be a subgroup of a group G. Define a relation $a \sim b$ on G by

$$a \sim b$$
 if $a = bh$ for some $h \in H$

a. Show that \sim is an equivalence relation on G.

Solution:

b. Let $a \in G$. Show that the block (block means equivalence class) of this equivalence relation containing a is aH. (Recall that aH is defined as $\{ah : h \in H\}$.)

Solution:

c. Show that |H| = |aH| by showing that map $f: H \to aH$ defined by f(h) = ah is one-to-one and onto.

Solution:

d. Prove that if G is a finite group and H is a subgroup, then |H| divides |G|. (This is known as Lagrange's Theorem).