1. (Chap 10, #7) Prove or disprove: If H is a normal subgroups of G such that H and G/H are both abelian, then G is abelian.

2. (Chap 10, #12) Show that if G has exactly one subgroup H of order k, then $H \triangleleft G$.

(20) 3. (Chap 10, #14) The center of a group G is

$$Z(G) = \{x \in G : xg = gx \text{ for all } g \in G\}$$

a. Calculate the center of S_3.

b. Calculate the center of $\text{GL}_2(\mathbb{R})$.

c. Show that the center of any group G is a normal subgroup of G.

d. Show that if $G/Z(G)$ is cyclic then G is abelian.

4. An isomorphism of G onto itself is called an automorphism of G. Prove that the set of all automorphisms of G forms a group, $\text{Aut}(G)$.

5. Let $g \in G$ and let $i_g : G \rightarrow G$ be defined by $i_g(x) = gxg^{-1}$. Show that i_g is an automorphism. An automorphism of this form is called an inner automorphism. Show that the set of all inner automorphisms forms a group (denoted $\text{Inn}(G)$) and that $\text{Inn}(G) \triangleleft \text{Aut}(G)$.