MATH 412 HW 2: September 10, 2015

BILLY BOB

*1. Let a and $b \in \mathbb{Z}$ with b > 0. If

$$a = bq + r$$
, $0 \le r \le b$,

then gcd(a, b) = gcd(b, r).

Solution:

2. a. Show that if a and b are integers satisfying $a^2 = 2b^2$ then a = b = 0. **Hint:** Use the Fundamental Theorem of Arithmetic.

Solution:

b. Show that $\sqrt{2}$ is irrational.

Solution:

3. Let p and q be primes such that $p \geq 5$ and $q \geq 5$. Show that

$$24 \mid (p^2 - q^2).$$

This problem is a bit hard. If you can't do it, try to show that $12 \mid (p^2 - q^2)$ and I'll give you partial credit.

Solution:

Note $p^2 - q^2 = (p+q)(p-q)$. First we show that $8 \mid p^2 - q^2$. Since p and q are both prines greater than or equal to 5, they are odd. So p+q and p-q are both even. Since the product of two even numbers is divisible by 4, we see that $4 \mid p^2 - q^2$. If $4 \mid p+q$ or $4 \mid p-q$ then 8 divides their product. Suppose that both p+q and p-q are congruenct to 2 (mod 4). Then

$$p + q = 4k + 2$$
$$p - q = 4t + 2.$$

Adding these equations gives 2p = 4(k+t) + 4 = 4(k+t+1). Dividing both sides by 2 gives p = 2(k+t+1), proving p is even. This is a contradiction. So 4 divides either p+q or p-q (and the other one is even). So $8 \mid p^2 - q^2$.

2 BILLY BOB

Now we show that $3 \mid p^2 - q^2$. Since both p and q are greater than or equal to 5, neither is divisible by 3. Let

$$p \equiv a \pmod{3}$$
, $a = 1 \text{ or } 2$
 $q \equiv b \pmod{3}$, $b = 1 \text{ or } 2$

If a=b the $p-q\equiv 0\pmod 3$. If a and b are different, then their sum is 3 and $p+q\equiv 0\pmod 3$ in this case. Thus $3\mid p-q$ or $3\mid p+q$, and so $3\mid p^2-q^2$.

Finally since $\gcd(3,8)=1$, we conclude $3\cdot 8=24\mid p^2-q^2$, as the student can show. (Note $6\mid 12$ and $4\mid 12$ but $24=6\cdot 4\nmid 12$, so we needed $\gcd(3,8)=1$ to conclude $24\mid p^2-q^2$.)