MATH 412 HW 2: September 10, 2015

BILLY BOB

*1. Let a and $b \in \mathbb{Z}$ with $b>0$. If

$$
a=b q+r, \quad 0 \leq r<b
$$

then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Solution:

2. a. Show that if a and b are integers satisfying $a^{2}=2 b^{2}$ then $a=b=0$. Hint: Use the Fundamental Theorem of Arithmetic.

Solution:

b. Show that $\sqrt{2}$ is irrational.

Solution:

3. Let p and q be primes such that $p \geq 5$ and $q \geq 5$. Show that

$$
24 \mid\left(p^{2}-q^{2}\right)
$$

This problem is a bit hard. If you can't do it, try to show that $12 \mid\left(p^{2}-q^{2}\right)$ and I'll give you partial credit.

Solution:

Note $p^{2}-q^{2}=(p+q)(p-q)$. First we show that $8 \mid p^{2}-q^{2}$. Since p and q are both prines greater than or equal to 5 , they are odd. So $p+q$ and $p-q$ are both even. Since the product of two even numbers is divisible by 4 , we see that $4 \mid p^{2}-q^{2}$. If $4 \mid p+q$ or $4 \mid p-q$ then 8 divides their product. Suppose that both $p+q$ and $p-q$ are congruenct to $2(\bmod 4)$. Then

$$
\begin{aligned}
& p+q=4 k+2 \\
& p-q=4 t+2 .
\end{aligned}
$$

Adding these equations gives $2 p=4(k+t)+4=4(k+t+1)$. Dividing both sides by 2 gives $p=2(k+t+1)$, proving p is even. This is a contradiction. So 4 divides either $p+q$ or $p-q$ (and the other one is even). So $8 \mid p^{2}-q^{2}$.

Now we show that $3 \mid p^{2}-q^{2}$. Since both p and q are greater than or equal to 5 , neither is divisible by 3 . Let

$$
\begin{array}{lll}
p \equiv a & (\bmod 3), & a=1 \text { or } 2 \\
q \equiv b & (\bmod 3), & b=1 \text { or } 2
\end{array}
$$

If $a=b$ the $p-q \equiv 0(\bmod 3)$. If a and b are different, then their sum is 3 and $p+q \equiv 0(\bmod 3)$ in this case. Thus $3 \mid p-q$ or $3 \mid p+q$, and so $3 \mid p^{2}-q^{2}$.

Finally since $\operatorname{gcd}(3,8)=1$, we conclude $3 \cdot 8=24 \mid p^{2}-q^{2}$, as the student can show. (Note $6 \mid 12$ and $4 \mid 12$ but $24=6 \cdot 4 \nmid 12$, so we needed $\operatorname{gcd}(3,8)=1$ to conclude $24 \mid p^{2}-q^{2}$.)

