MATH 412 HW 3: September 23, 2015

BILLY BOB

1. Let $d \in \mathbb{Z}$ be square-free. This means there is no element $a>1$ in \mathbb{Z} such that $a^{2} \mid d$. So d is square-free if and only if it is a product of distinct primes. Consider the ring

$$
R=\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\} .
$$

Define the norm of an element by

$$
N(a+b \sqrt{d})=(a+b \sqrt{d})(a-b \sqrt{d})=a^{2}-b^{2} d .
$$

a. Show that if α and $\beta \in R$, then $N(\alpha \beta)=N(\alpha) N(\beta)$.
*b. Show that if $u \in R$ is a unit if and only if $N(u)= \pm 1$.
c. Show that when $d=-1, R$ has exactly 4 units.
d. Show that when $d<-1, R$ has exactly 2 units.
e. Show that if $d=3$ then there are infinitely many units in R. Hint: if u is a unit then u^{k} is also a unit for all $k \in \mathbb{Z}$.

Solution:

2. Let R be a ring.
a. Let $a \in R$. Suppose that a is not a zero divisor. Show that cancellation holds for a; that is, show that if $a b=a c$ then $b=c$.
b. Show that if a is not a zero divisor and $a b=1_{R}$ for some element $b \in R$, then $b a=1_{R}$.

Solution:

3. Let $R=\{0,1, a, b\}$ be a ring where a and b are units. Find the multiplication table of R. In other words find what the four ?'s should be. Give your reasons.

\cdot	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	$?$	$?$
b	0	b	$?$	$?$

Also find the addition table for this ring.
Solution:

Since a is a unit there is an element a^{-1}. So if $a x=a y$ then $x=y$. This means the row labelled a cannot have any repeated elements. The same applies to the column headed with a and also to the column headed by b. So the two ?'s in the a-row must be 1 and b in some order. But the fourth column already has a b in it so we must have b first and 1 second. Now we can easily fill in the last row since each column must have all 4 elements:

\cdot	0	1	a	b
0	0	0	0	0
1	0	1	a	b
a	0	a	b	1
b	0	b	1	a

For addition note that every element x has an additive inverse, namely $-x$. So each row and each column of the addition table must have all 4 elements. So $1+1$ must be $0, a$, or b. Suppose $1+1=a$. Then $a+b$ must be either b or 0 . But we can't have $1+b=b$ So $1+b=0$ and $1+a$ must be b. Since addition is commutative, the table so far is

+	0	1	a	b
0	0	1	a	b
1	1	a	b	0
a	a	b		
b	b	0		

It is now easy to see there is only one way to fill in the addition table under the asumption $1+1=a$:

+	0	1	a	b
0	0	1	a	b
1	1	a	b	0
a	a	b	0	1
b	b	0	1	a

But then $0=a+a=(1+1) a=a^{2}$. Multiplying by $a^{-1}=b$ gives $0=a$, a contradiction. So $1+1$ cannot be a. A similar argument shows it cannot be b. So we mush have $1+1=0$. The only way to fill in the table is

+	0	1	a	b
0	0	1	a	b
1	1	0	b	a
a	a	b	0	1
b	b	a	1	0

