MATH 412 HW 4: September 28, 2015

BILLY BOB

1. Show that every element of \mathbb{Z}_{n} is either a unit or a zero divisor but not both.

Solution:

2. Show that $1+3 x$ is a unit in $\mathbb{Z}_{9}[x]$.

Solution:

3. Let $d \in \mathbb{Z}$ be a squarefree integer which is not 0 or 1 . Show that

$$
R=\left\{\left(\begin{array}{cc}
a & b d \\
b & a
\end{array}\right): a, b \in \mathbb{Z}\right\}
$$

forms a ring using matrix addition and multiplication. Show that R is isomorphic to the ring $\mathbb{Z}[\sqrt{d}]$ that was given in the previous exercice set. Show that if $d=4$ then R is still a ring but it is not isomorphic to $\mathbb{Z}[\sqrt{4}](=\mathbb{Z}[2]=\mathbb{Z})$.

Solution:

Since R is a subset of $M_{2}(\mathbb{Z})$, we need only show that it is closed under addition, multiplication and negation. Suppose both $\left(\begin{array}{cc}a & b d \\ b & a\end{array}\right)$ and $\left(\begin{array}{cc}a^{\prime} & b^{\prime} d \\ b^{\prime} & a^{\prime}\end{array}\right)$ are in R. Then

$$
\begin{aligned}
\left(\begin{array}{cc}
a & b d \\
b & a
\end{array}\right)\left(\begin{array}{cc}
a^{\prime} & b^{\prime} d \\
b^{\prime} & a^{\prime}
\end{array}\right) & =\left(\begin{array}{cc}
a a^{\prime}+b b^{\prime} d & a b^{\prime} d+a^{\prime} b d \\
b a^{\prime}+a b^{\prime} & a a^{\prime}+b b^{\prime} d
\end{array}\right) \\
& =\left(\begin{array}{cc}
a a^{\prime}+b b^{\prime} d & \left(a b^{\prime}+a^{\prime} b\right) d \\
b a^{\prime}+a b^{\prime} & a a^{\prime}+b b^{\prime} d
\end{array}\right) .
\end{aligned}
$$

This last matrix has the form $\left(\begin{array}{cc}a^{\prime \prime} & b^{\prime \prime} d \\ b^{\prime \prime} & a^{\prime \prime}\end{array}\right)$, so it is in R. Thus R is closed under multiplication. Similar (but easier) calculations show it is also closed under addition and negation.

Define a map $f: \mathbb{Z}[\sqrt{d}] \rightarrow R$ by

$$
\begin{gathered}
f(a+b \sqrt{d})=\left(\begin{array}{cc}
a & b d \\
b & a
\end{array}\right) ~
\end{gathered}
$$

Since d is squarefree and so \sqrt{d} is irrational, $a+b \sqrt{d}=a^{\prime}+b^{\prime} \sqrt{d}$ implies $a=a^{\prime}$ and $b=b^{\prime}$. Hence f is well defined. It is clearly one-to-one and straightforward calculations show it preserves the operations. For example, since

$$
(a+b \sqrt{d})\left(a^{\prime}+b^{\prime} \sqrt{d}\right)=a a^{\prime}+b b^{\prime} d+\left(a b^{\prime}+a^{\prime} b\right) \sqrt{d}
$$

we see from our formula above for products in R that f preserves multiplication.

Now suppose $d=4$. Choosing $a=0$ and $b=1$, we see that

$$
A=\left(\begin{array}{ll}
0 & 4 \\
1 & 0
\end{array}\right) \in R .
$$

Since $A^{2}=4 I_{2}, A$ is a solution to the equation $x^{2}=4$. But $2 I_{2}$ and $-2 I_{2}$ are also solutions so the equation has at least 3 solutions in R. But there are only two solutions in \mathbb{Z}. Since an isomorphism must take solutions to solutions (efts), R and \mathbb{Z} are not isomorphic.

