MATH 412 HW 7

BILLY BOB

1. Let I be an ideal of a ring R and let S be a subring of R. Show that $I \cap S$ is an ideal of S.

Solution:

2. Let S be the set of matrices of the form $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)$ and let I be the set of matrices of the form $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$, where a, b and c are in \mathbb{R}.
a. Show that S is a ring and that I is an ideal of S.

Solution:

b. Show that $S / I \cong \mathbb{R} \times \mathbb{R}$. Hint: Show that $f: S \rightarrow \mathbb{R} \times \mathbb{R}$ defined by $f\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=(a, c)$ is a homomorphism from S onto $\mathbb{R} \times \mathbb{R}$ with kernel I. Now invoke the first isomorphism theorem.

Solution:

3. Let p be a prime integer and let T be the set of rational numbers (in lowest terms) whose denominators are not divisible by p. Let I be the set of elements in T such that the numerator is divisible by p.
a. Prove T is a ring and that I is an ideal of T.

Solution:

b. Show that T / I is isomorphic to \mathbb{Z}_{p}. Hint: See the hint for problem 2.
Solution: Let $a / b \in T$, where a and $b \in \mathbb{Z}$ and $\operatorname{gcd}(b, p)=1$. For $a \in \mathbb{Z}$ let $[a]_{p}$ denote the equivalence class of a modulo p. Define a map $f: T \rightarrow \mathbb{Z}_{p}$ by

$$
f(a / b)=[a]_{p} \cdot\left([b]_{p}\right)^{-1}
$$

Notice that since b is relatively prime to p it is invertible in \mathbb{Z}_{p}; so the above definition makes sense. Also if a / b and a^{\prime} / b^{\prime} are equal as rational numbers and both b and b^{\prime} are relatively prime to p, then $f(a / b)=f\left(a^{\prime} / b^{\prime}\right)$. We leave the
proof of this to the reader. We claim f is a homomorphism.
To see it preserves products we calculate

$$
\begin{aligned}
f\left(\frac{a}{b} \cdot \frac{c}{d}\right) & =f\left(\frac{a c}{b d}\right) \\
& =[a c]_{p}\left([b d]_{p}\right)^{-1} \\
& =[a]_{p}[c]_{p}\left([b]_{p}[d]_{p}\right)^{-1} \\
& =[a]_{p}[c]_{p}\left([b]_{p}\right)^{-1}\left([d]_{p}\right)^{-1} \\
& =[a]_{p}\left([b]_{p}\right)^{-1}[c]_{p}\left([d]_{p}\right)^{-1} \\
& =f\left(\frac{a}{b}\right) f\left(\frac{c}{d}\right)
\end{aligned}
$$

A similar calculation shows that f preserves subtraction and thus f is a homomorpism. Clearly f is onto.
From the definitions of f we see that $f(a / b)=[0]_{p}$ if and only if $[a]_{p}=[0]_{p}$. And this happens if and only if a is a multiple of p, which happens if and only if $a / b \in I$. So I is the kernel of f and by the first isomorphism theorem, $T / I \cong \mathbb{Z}_{p}$.

Extra Credit Problem

4. Find the lattice of ideals of the ring T from problem 3 . There are infinitely many ideals but the lattice is pretty simple.

Solution:

