Math 412 Final, Take Home Part
Due Dec 13, 2012

This is open book.

1. Let R be the ring of all upper triangular $n \times n$ matrices with entries in a field. Let I be the set of all strictly upper triangular matrices. (A is upper triangular if $a_{ij} = 0$ whenever $i > j$; it is strictly upper triangular if $a_{ij} = 0$ whenever $i \geq j$.)

 a. Show I is an ideal of R.
 Solution:

 b. Show $R/I \cong S$, where S is the ring of diagonal matrices.
 Solution:

2. Let R be a ring in which $x^2 = x$ holds for every $x \in R$.

 a. Show that $2a = 0$ for all $a \in R$. (Of course $2a$ means $a + a$.)
 Solution:

 b. Show R is commutative.
 Solution:

3. Find all monic irreducible polynomials of

 a. degree 2 in $\mathbb{Z}_3[x]$.
 Solution:

 b. degree 3 in $\mathbb{Z}_2[x]$.
 Solution:

4. Determine if the given polynomial is irreducible:

 a. $x^3 - 9$ in $\mathbb{Z}_{11}[x]$
 Solution:

 b. $x^4 + x^2 + 1$ in $\mathbb{Z}_3[x]$
 Solution:

 c. $x^4 + 2x^2 + 2x + 2$ in $\mathbb{Z}_3[x]$
 Solution:
5. Show that there are infinitely many integers k such that $x^9 + 12x^5 - 21x + k$ is irreducible in $\mathbb{Q}[x]$. Hint: Use Eisenstein.

Solution:

6. An element a of a ring R of a nilpotent if $a^n = 0$ for some n. Assume R is commutative.

 a. If $a^n = 0$ and $b^m = 0$ in R, show that $(a + b)^{n+m-1} = 0$. Hint: the binomial theorem, which is true in commutative rings, says

 $$(a + b)^k = \sum_{i=0}^{k} \binom{k}{i} a^i b^{k-i}$$

 Solution:

 b. Show that the set N of all nilpotent elements of R is an ideal and that R/N has no nonzero nilpotent element.

 Solution:

 c. Show that in $M_2(F)$, F a field, the set of nilpotent elements do not form an ideal. Hint: Find $A, B \in M_2(F)$ which satisfy $A^2 = 0$ and $B^2 = 0$ but $A + B$ is not nilpotent.

 Solution: