Math 475 Exercises 3
 Due: Apr 1, 2010

1. The procedure below takes an array of integers and determines if some elements occurs three (or more) times in the array. Which of the following big- O estimates: $O(\log n), O(n), O(n \log n), O\left(n^{2}\right), O\left(n^{2} \log n\right)$, $O\left(n^{3}\right), O\left(n^{3} \log n\right), O\left(n^{4}\right)$, and $O\left(2^{n}\right)$ best describes the worst-case running time of the algorithm.
```
public boolean hasThreeEqual(int[] arr) {
    int n = arr.length;
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j< n; j++) {
            if (arr[i] = arr[j]) {
                for (int k = j + 1; k < n; k++) {
                        if (arr[j] = arr[k]) {
                        return true;
                        }
                }
            }
        }
    }
    return false;
}
```

2. Describe (you don't need to write a program for it) a fast algorithm to do the same proceedure as problem 1.
3. Let V be a vector of size n representing a partition as described in class. Describe an algorithm that modifies V so that each tree (block) has depth at most 1 and runs in time $O(n)$.
4. Let V be a vector of size n representing a partition and suppose the trees have depth at most 1. Find an algorithm that runs in time $O(n)$ that changes V so that the root of each tree is the smallest member of that block (and the depth stays at most 1).
5. The lattice of all subsets of an n-element set has order dimension n; that is, it is the intersection of n linear extensions and no fewer. We outlined in class that it is the intersection of n linear extensions, so you don't need to do that part. But prove that it cannot be written as the intersection of fewer than n linear extensions.

Figure 1: $\mathbf{2} \times \mathbf{n}$
6. Show the lattice in the picture has

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

linear extensions. You can use Theorem 8.1.1 in the book.

