Math 475 Exercises 4
 Due: Apr 20, 2010

1. The procedure below takes an array of integers and determines if some elements occurs three (or more) times in the array. Which of the following big- O estimates: $O(\log n), O(n), O(n \log n), O\left(n^{2}\right), O\left(n^{2} \log n\right)$, $O\left(n^{3}\right), O\left(n^{3} \log n\right), O\left(n^{4}\right)$, and $O\left(2^{n}\right)$ best describes the worst-case running time of the algorithm.
```
public boolean hasThreeEqual(int[] arr) {
    int n = arr.length;
    for (int i = 0; i < n; i++) {
        for (int j = i + 1; j < n; j++) {
            if (arr[i] = arr[j]) {
                for (int k = j + 1; k<n; k++) {
                    if (arr[j] = arr[k]) {
                        return true;
                            }
                }
            }
        }
    }
    return false;
}
```

2. Show $B(n) \leq n!$.
3. Let V be a vector space of dimension 4 over a finite field with q elements and let $\mathbf{L}=\operatorname{Sub}(V)$ be the lattice of subspaces. Find $n=|\mathbf{L}|$ and the number $e_{\prec}=e_{\prec}(\mathbf{L})$ of covers in this lattices. If you express e_{\prec} as powers of n and take the limit as q goes to infinity, it has the form $c n^{r}$ plus lower order terms. Find c and r.
4. An $n \times n$ matrix is doubly stochastic if $0 \leq a_{i j} \leq 1$ and each row sum and each column sum is 1 . Prove that if A is doubly stochastic then it has a diagonal all of whose entries are nonzero.
