
Algebra Notes

April 7, 2011

Contents

I Fall 2010: Universal Algebra & Group Theory 4

1 Universal Algebra 5
1.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Subalgebras and Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Direct Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Congruence Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Quotient Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Direct Products of Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Rings, Modules and Linear Algebra 12

2 Rings 13
2.1 Factorization in Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Rings of Frations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Euclidean Domain and the Eucidean Algorithm . . . . . . . . . . . . . . . . . . . . . 14
2.4 Polynomial Rings, Gauss’ Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Irreducibility Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Modules 18
3.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Finitely Generated Modules over a PID . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Algebraic Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Projective, Injective and Flat Modules; Exact Sequences . . . . . . . . . . . . . . . . 27

1



CONTENTS CONTENTS

III Fields 30

4 Basics 31

A Prerequisites 32
A.1 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
A.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



CONTENTS CONTENTS

Primary Textbook: Jacobson, Basic Algebra [4].

Supplementary Textbooks: Hungerford, Algebra [3]; Dummitt and Foote. Abstract Algebra [1];

Primary Subject: Classical algebra systems: groups, rings, fields, modules (including vector
spaces). Also a little universal algebra and lattice theory.

List of Notation

• AA, the set of maps from a set A into itself.

• Aut(A), the group of automorphisms of an algebra A.

• End(A), the set of endomorphisms an algebra A.

• Hom(A,B), the set of homomorphism from an algebra A into an algebra B.

• Con(A), the set of congruence relations of an algebra A.

• ConA, the lattice of congruence relations of an algebra A.

• Eq(A), the set of equivalence relations of a set A.

• EqA, the lattice of equivalence relations of a set A.

• Sub(A), the set of subalgebras of an algebra A.

• SubA, the lattice of subalgebras of an algebra A.

• SgA(X), the subuniverse generated by a set X ⊆ A.

• N = {1, 2, . . . }, the set of natural numbers.

• Z = {. . . ,−1, 0, 1, . . . }, the ring of integers.

• R = (−∞,∞), the real number field.

• C, the complex number field.

• Q, the rational number field.
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1 UNIVERSAL ALGEBRA

1 Universal Algebra

1.1 Basic concepts

A (universal) algebra is a pair
A = 〈A;F 〉 (1.1)

where A is a nonempty set and F = {fi : i ∈ I} is a set of finitary operations on A; that is,
fi : An → A for some n ∈ N. A common shorthand notation for (1.1) is 〈A; fi〉i∈I . The number n
is called the arity of the operation fi.

Thus, the arity of an operation is the number of operands upon which it acts, and we say that
f ∈ F is an n-ary operation on A if f maps An into A. An operation is called nullary (or constant)
if its arity is zero. Unary, binary, and ternary operations have arities 1, 2, and 3, respectively.

Example 1.1. If A = R and f : R × R → R is the map f(a, b) = a + b, then 〈A; f〉 is an algebra
with a single binary operation. Many more examples will be given below.

An algebra A is called unary if all of its operations are unary. An algebra A is finite if |A|
is finite and trivial if |A| = 1. Given two algebras A and B, we say that B is a reduct of A if
both algebras have the same universe and A (resp. B) can be obtained from B (resp. A) by adding
(resp. removing) operations.

A better approach: An operation symbol f is an object that has an associated arity, which we’ll
denote arity(f). A set of operation symbols F is called a similarity type. An algebra of similarity
type F is a pair A = 〈A;FA〉, where FA = {fA : f ∈ F} and fA is an operation on A of arity
arity(f).

Example 1.2. Consider the set of integers Z with operations F = {+, ·,−, 0, 1}, which have
respective arities {2, 2, 1, 0, 0}. The operation + is the usual binary addition, while − is negation:
a 7→ −a. The constants 0 and 1 are nullary operations.

1.2 Subalgebras and Homomorphisms

Suppose A = 〈A;FA〉 is an algebra. We call the nonempty set A the universe of A. If a nonempty
subset B ⊆ A is closed under all operations in FA, we call B a subuniverse of A. By closed under
all operations we mean the following: for each f ∈ FA (say f is n-ary), we have f(b0, . . . , bn−1) ∈ B,
for all b0, . . . , bn−1 ∈ B.

If B is a subuniverse of 〈A;FA〉, and if we let1 FB = {f � B : f ∈ FA}, then the algebra
B = 〈B;FB〉 is called a subalgebra of A. If B is a subalgebra of A, we denote this fact by B 6 A.
Similarly, we write B 6 A if B is a subuniverse of A. We denote the set of all subalgebras of A by
Sub(A).

Theorem 1.3. If Ai 6 A, i ∈ I, then
⋂
Ai is a subuniverse if it is not empty.

If S is a nonempty subset of A, the subuniverse generated by S, denoted SgA(S) or 〈S〉 is
the smallest subuniverse of A containing the set S. When 〈S〉 = A, we say that S generates A.

1Here f � B denotes restriction of the function f to the set B (see Appendix Sec. A.2).
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1.3 Direct Products 1 UNIVERSAL ALGEBRA

Theorem 1.4. If S ⊆ A, then SgA(S) = 〈S〉 =
⋂
{B 6 A : S ⊆ B}.

Define {Si} recursively as follows:

S0 = S;
Si+1 = {f(a1, . . . , ak) : f is a k-ary basic operation of A and ai ∈ Si}.

Let A = 〈A;FA〉 and B = 〈B;FB〉 be algebras of the same type F , and let Fn denote the set
of n-ary operation symbols in F . Consider a mapping ϕ : A → B and operation symbol f ∈ Fn,
and suppose that for all a0, . . . an−1 ∈ A the following equation holds:

ϕ(fA(a0, . . . , an−1)) = fB(ϕ(a0), . . . , ϕ(an−1)).

Then ϕ is said to respect the interpretation of f . If ϕ respects the interpretation of every f ∈ F ,
then we call ϕ a homomorphism from A into B, and we write ϕ ∈ Hom(A,B), or simply,
ϕ : A→ B.

1.3 Direct Products

The direct product of two sets A0 and A1, denoted A0×A1, is the set of all ordered pairs2 〈a0, a1〉
such that a0 ∈ A0 and a1 ∈ A1. That is, we define

A0 ×A1 := {〈a0, a1〉 : a0 ∈ A0, a1 ∈ A1}.

More generally, A0× · · · ×An−1 is the set of all sequences of length n with ith element in Ai. That
is,

A0 × · · · ×An−1 := {〈a0, . . . , an−1〉 : a0 ∈ A0, . . . , an−1 ∈ An−1}.

Equivalently, A0 × · · · ×An−1 it is the set of all functions with domain {0, 1, . . . , n− 1} and range
n−1⋃
i=1

Ai. More generally still, let {Ai : i ∈ I} be an indexed family of sets. Then the direct product

of the Ai is ∏
i∈I

Ai := {f | f : I →
⋃
i∈I

Ai with f(i) ∈ Ai}.

When A0 = A1 = · · · = A, we often use the shorthand notation A2 := A×A and An := A×· · ·×A
(n terms).

Question: How do you know
∏
i∈I

Ai 6= ∅, even supposing I 6= ∅ and Ai 6= ∅ for all i ∈ I.3

2For the definition of ordered pair, consult the appendix.
3Answer: Each f “chooses” an element from each Ai, but when the Ai are all different and I is infinite, we may

not be able to do this. The Axiom of Choice (AC) says you can.
Gödel proved that the AC is consistent with the other axioms of set theory. Cohen proved that the negation of the

AC is also consistent.
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1.4 Relations 1 UNIVERSAL ALGEBRA

1.4 Relations

A k-ary relation R on a set A is a subset of the cartesian product Ak.

Example 1.5.

(a) A = R (the line) and R = {a ∈ R2 : a is rational}.

(b) A = R2 (the plane) and R = {(a, b, c) ∈ R2 × R2 × R2 : a, b, c lie on a line}; i.e. tripples of
points which are colinear.

(c) A = R2 and R = {(a, b) ∈ R2 × R2 : a = (a1, a2), b = (b1, b2), a2
1 + a2

2 = b21 + b22}. This is an
equivalence relation. The equivalence classes are circles centered at (0, 0).

(d) A = R2 and R = “6 on each component” = {(a, b) ∈ R2 × R2 : a1 6 b1, a2 6 b2}.

The relation in the last example above is a partial order; that is, 6 satisfies, for all a, b, c,

1. a 6 a (reflexive)

2. a 6 b, b 6 a ⇒ a = b (anti-symmetric)

3. a 6 b, b 6 c ⇒ a 6 c (transitive)

A relation R on a set A is an equivalence relation if it satisfies, for all a, b, c,

1. a R a (reflexive)

2. a R b ⇒ b R a (symmetric)

3. a R b, b R c ⇒ a R c (transitive)

We denote the set of all equivalence relations on a set A by Eq(A).
A partition of a set A is a collection Π = {Ai : i ∈ I} of non-empty subsets of A such that⋃

i∈I
Ai = A and Ai ∩Aj = ∅ for all pairs i 6= j in I.

Facts and notation:

1. The Ai are called “blocks.”

2. Each partition Π determines an equivalence relation – namely, the relation θ defined by a θ b
if and only if a and b are in the same block of Π.

3. Conversely, if θ is an equivalence relation on A (θ ∈ Eq(A)), we denote the equivalence class
of θ containing a by a/θ := {b ∈ A : a θ b} and the set A/θ := {a/θ : a ∈ A} of all θ classes is
a partition of A.

4. “an SDR” (add something here)
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1.5 Congruence Relations 1 UNIVERSAL ALGEBRA

1.5 Congruence Relations

Let A and B be sets and let ϕ : A→ B be any mapping. We say that a pair 〈a0, a1〉 ∈ A2 belongs
to the kernel of ϕ, and we write 〈a0, a1〉 ∈ kerϕ, just in case ϕ(a0) = ϕ(a1). Thus, to every map
ϕ there corresponds a relation ∼ϕ= kerϕ, defined by

a ∼ϕ a′ ⇔ ϕ(a) = ϕ(a′).

We leave it as an exercise to prove

Proposition 1.6. kerϕ is an equivalence relation.

If ∼ is an equivalence relation on a set A, then a/∼ denotes the equivalence class containing
a; that is, a/∼ := {a′ ∈ A : a′ ∼ a}. The set of all equivalence classes of ∼ in A is denoted A/∼.
That is, A/∼ = {a/∼ : a ∈ A}.

Let A = 〈A;FA〉 and B = 〈B;FB〉 be algebras of the same type and let ϕ : A → B be
any mapping. As above, ϕ determines the equivalence relation ∼ϕ= kerϕ on A. A congruence
relation on A is an equivalence relation ∼ϕ arising from a homomorphism ϕ : A → B, for some
B. We denote the set of all congruence relations on A by ConA.

To reiterate, θ ∈ ConA iff θ = kerϕ for some homomorphism ϕ of A. It is easy to check that
this is equivalent to: θ ∈ ConA iff θ ∈ Eq(A) and

〈ai, a′i〉 ∈ θ (0 6 i < n) ⇒ 〈f(a0, . . . , an−1), f(a′0, . . . , a
′
n−1)〉 ∈ θ, (1.2)

for all f ∈ Fn and all a0, . . . , an−1, a
′
0, . . . , a

′
n−1 ∈ A. Equivalently,4

ConA = Eq(A) ∩ Sub(A×A).

We record this fact as

Theorem 1.7. Suppose A = 〈A;F 〉 is an algebra and θ is an equivalence relation on the set A.
Then θ is congruence relation on the algebra A if and only if for every n-ary basic operation f ∈ F
and for all a0, . . . , an−1, a

′
0, . . . , a

′
n−1 ∈ A,

ai θ a
′
i (0 6 i < n) ⇒ f(a0, . . . , an−1) θ f(a′0, . . . , a

′
n−1).

In fact, we can replace the final implication in the theorem with: for each 0 6 i < n,

ai θ a
′
i ⇒ f(a0, . . . , ai, . . . an−1) θ f(a0, . . . , a

′
i, . . . , an−1).

Proof sketch: Recall that a/θ denotes the equivalence class of θ which contains a, and A/θ denotes
the full set of θ classes: A/θ = {a/θ : a ∈ A}. For every operation fA on A (say it is n-ary), we
define

fA/θ(a1/θ, . . . , an/θ) := fA(a1, . . . , an)/θ.

One easily checks that this is well-defined and that the map a 7→ a/θ is a homomorphism of A onto
the algebra A/θ := 〈A/θ, FA/θ〉, where FA/θ := {fA/θ : fA ∈ F}. Finally, note that the kernel of
this homomorphism is θ.

4The direct product algebra A×A is defined below in section 1.7.
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1.6 Quotient Algebras 1 UNIVERSAL ALGEBRA

1.6 Quotient Algebras

Let A = 〈A;F 〉 be an algebra. Recall, F denotes the set of operation symbols, and to each operation
symbol f ∈ F there corresponds an arity, and the set of arities determines the similarity type of
the algebra. (We might do better to denote the algebra by 〈A;FA〉, since the algebra is not defined
until we have associated to each operation symbol f ∈ F an actual operation fA on A, but this is
a technical point, and we will often denote two algebras of the same similarity type as 〈A;F 〉 and
〈B;F 〉 with the understanding that the meaning of F depends on the context.)

Let θ ∈ ConA be a congruence relation. The quotient algebra A/θ is an algebra with the
same similarity type as A, with universe A/θ = {a/θ : a ∈ A}, and operation symbols F , where for
each (k-ary) symbol f ∈ F the operation fA/θ is defined as follows: for (a1/θ, . . . , ak/θ) ∈ (A/θ)k,

fA/θ(a1/θ, . . . , ak/θ) = fA(a1, . . . , ak)/θ.

(As mentioned above, F denotes the set of operation symbols of the similarity type of the algebra,
and it is “overloaded” in the sense that we write A = 〈A;F 〉 and A/θ = 〈A/θ, F 〉, and for each
f ∈ F the corresponding operation in these algebras is interpreted appropriately – i.e., as fA or
fA/θ.)

1.7 Direct Products of Algebras

Above we defined direct products of sets. We now define direct products of algebras. Let A = 〈A;F 〉
and B = 〈B;F 〉 be two algebras of the same similarity type. The direct product A × B is an
algebra of the same type as A and B, with universe A×B = {(a, b) : a ∈ A, b ∈ B}, and operation
symbols F . To each (k-ary) symbol f ∈ F corresponds an operation fA×B defined as follows: for
((a1, b1), . . . , (ak, bk)) ∈ (A×B)k,

fA×B((a1, b1), . . . , (ak, bk)) = (fA(a1, . . . , ak), fB(b1, . . . , bk)). (1.3)

This definition can be easily extended to the direct product
∏

Ai of any collection of algebras
{Ai : i ∈ I}, and we leave it to the reader to write down the defining property of the operations,
which is completely analogous to (1.3).

When all the algebras are the same – that is, when Ai
∼= A, for some A – we call

∏
Ai the

direct power of A. When the set I is finite, say, I = 1, 2, . . . , n, we have alternative notations for
the direct power, namely, ∏

Ai = A1 ×A2 × · · · ×An = An.

The constructions of this subsection section and the preceeding one are often combined to give
direct products of quotient algebras. For instance, if θ1 and θ2 are two congruences of A, the
algebra A/θ1 ×A/θ2 has the same similarity type as A, and its universe is

A/θ1 ×A/θ2 = {(a/θ1, b/θ2) : a, b ∈ A}.

The operation symbols are again F , and to each (k-ary) symbol f ∈ F corresponds an operation
fA/θ1×A/θ2 defined as follows: for ((a1/θ1, b1/θ2), . . . , (ak/θ1, bk/θ2)) ∈ (A/θ1 ×A/θ2)k,

fA/θ1×A/θ2((a1/θ1, b1/θ2), . . . , (ak/θ1, bk/θ2)) = (fA/θ1(a1/θ1, . . . , ak/θ1), fA/θ2(b1/θ2, . . . , bk/θ2))

= (fA(a1, . . . , ak)/θ1, fA(b1, . . . , bk)/θ2).
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1.8 Lattices 1 UNIVERSAL ALGEBRA

1.8 Lattices

A relational structure is a set A and a collection of (finitary) relations on A. A partially
ordered set, or poset, is a set A together with a partial order (Sec. 1.4) 6 on it, denoted 〈A,6〉.

Let 〈A,6〉 be a poset and let B be a subset of the set A. An element a in A is an upper bound
for B if b 6 a for every b in B. An element a in A is the least upper bound of B, denoted

∨
B,

or supremum of B (supB), if a is an upper bound of B, and b 6 c for every b in B implies a 6 c
(i.e., a is the smallest among the upper bounds of B). Similarly, a is a lower bound of B provided
a 6 b for all b in B, and a is the greatest lower bound of B (

∧
B), or infimum of B (inf B) if a

is a lower bound and is above every other lower bound of B.
Let a, c be two elements in the poset A. We say c covers a, or a is covered by c provided a 6 c

and whenever a 6 b 6 c it follows that a = b or b = c. We use the notation a ≺ c to denote that c
covers a.

A lattice is a partially ordered set 〈L;6〉 such that for each pair a, b ∈ L there is a least upper
bound, denoted a∨b := lub{a, b}, and a greatest lower bound, denoted a∧b := glb{a, b}, contained
in L. A lattice can also be viewd as an algebra 〈L;∨,∧〉 where ∨, called “join,” and ∧, “meet,” are
binary operations satisfying

1. x ∨ x = x and x ∧ x = x (idempotent)

2. x ∨ y = y ∨ x and x ∧ y = y ∧ x (commutative)

3. x ∨ (y ∨ z) = (x ∨ y) ∨ z (associative)

4. x ∨ (y ∧ x) = x and x ∧ (y ∨ x) = x (absorbtive)

Posets in general, and lattices in particular, can be visualized using a so-called Hasse diagram.
The Hasse diagram of a poset 〈A,6〉 is a graph in which each element of the set A is denoted by
a vertex, or “node” of the graph. If a ≺ b then we draw the node for b above the node for
a, and join them with a line segment. The resulting diagram gives a visual description of the
relation 6, since a 6 b holds iff for some finite sequence of elements c1, . . . , cn in A we have
a = c1 ≺ c2 ≺ · · · ≺ cn = b. Some examples appear in the figures below.

Figure 1: Hasse diagrams

a b

c d

Note that the first two examples in Figure 1 depict the same poset, which illustrates that
Hasse diagrams are not uniquely determined. Also, note that the poset represented in the first two
diagrams is a lattice. In contrast, the poset depicted in the third diagram is not a lattice since

10



1.8 Lattices 1 UNIVERSAL ALGEBRA

Figure 2: Hasse diagrams of some small lattices.

1 2 3 4 2× 2 5

Figure 3: Hasse diagrams of two important lattices.

M3 N5

neither a∧ b nor c∨d is defined – the sets {a, b} and {c, d} have upper and lower bounds, but {a, b}
has no greatest lower bound, and {c, d} has no least upper bound.
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2 RINGS

2 Rings

2.1 Factorization in Rings

In this sections R denotes a commutative ring with 1. For a, b ∈ R, we say a divides b if there
exists x ∈ R such that ax = b. This is denotes a | b. We say a and b are associates if a | b and
b | a. An element u is a unit if there exists a v ∈ R with uv = vu = 1.

Theorem 2.1 (Theorem 4 in class). R commutative with 1, a, b, u ∈ R, then

1. a | b iff (b) ⊆ (a).

2. a and b are associates iff (a) = (b).

3. u is a unit iff u | r for all r ∈ R.

4. u is a unit iff (u) = R.

5. The relation “a is an associate of b” is an equivalence relation.

6. If a = bu, where u is a unit, then a and b are associates. If R is an integral domain the
converse is true.

Proof. Exercise.

An ideal P is prime in R if P 6= R and if A and B are ideals then

AB ⊆ P =⇒ A ⊆ P or B ⊆ P

Theorem 2.2 (Theorem 5 in class). R commutative with 1. An ideal P of R is primve iff

∀a, b ∈ R, ab ∈ P =⇒ a ∈ P or b ∈ P

Proof. Coming.

Definition 2.3. R is a principal ideal domain, or PID, if it is an integral domain and all ideals
are principal.

Definition 2.4. c ∈ R is irrediducible if

1. c is a nonunit and not 0, and

2. c = ab implies a or b is a unit.

p ∈ R is prime if

1. p is a nonunit and not 0, and

2. p | ab implies p | a or p | b.

Theorem 2.5 (Theorem 6 in class). Let R be an integral domain, and let p ∈ R.

1. p is a prime iff (p) is a nonzero prime ideal.

13



2.2 Rings of Frations 2 RINGS

2. c is irreducible iff (c) is a maximal in the set of all proper, principal ideal fo R.

3. Every prime is irreducible.

4. If R is a PID then p is prime iff it is irreducible.

5. Associates of prime [irreducible] elements are prime [irreducible].

6. The only divisors of an irreducible element are associates and units.

Proof. Coming.

Definition 2.6. An integral domain is a unique factorization domain, or UFD if

1. If a ∈ R, a 6= 0, and a is not a unit then a = c1c2 · · · cn, where the ci’s are irreducible.

2. If a = c1c2 · · · cn and a = d1d2 · · · dm, ci, dj irredicible, then n = m and there is a σ ∈ Sn
such that ci and dσ(i) are associates.

Lemma 2.7. If R is a PID then R satisfies the ACC; that is if Ii an ideal and

I1 ⊆ I2 ⊆ · · ·

then, for some n and all k ≥ 0, In+k = In.

Proof. Laters.

Theorem 2.8 (Theorem 7 in class). If R is a PID then it is a UFD.

We proved that in a PID, an element is prime iff it is irreducible. Now we extend this to UFD’s.

Theorem 2.9. In a UFD R, a nonzero element is prime iff it is irreducible.

Proof. By Theorem 2.5(3), if an element is prime in R it is irreducible. So suppose p ∈ R is
irredicible and suppose p | ab. So pc = ab for some c ∈ R. If we write a, b and c as a product
of irreducibles and use the uniqueness of the factorization and that p is irreducible, we see that p
must be an associate of one of the irreducibles in a or one in b. WLOG we may assume the former
so a = (up)c2 · · · cn so p | a.

2.2 Rings of Frations

Coming.

2.3 Euclidean Domain and the Eucidean Algorithm

Coming.
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2.4 Polynomial Rings, Gauss’ Lemma 2 RINGS

2.4 Polynomial Rings, Gauss’ Lemma

A greatest common divisor or gcd of elements a and b is an element c such that c | a and c | b
and if d is any element such that d | a and d | b then d | c. The gcd will not in general be unique
but any two are associates. In a UFD we can find gcd(a, b) by letting p1, . . . , pn be the distinct
primes that occur in either a or b. Then, a = u

∏n
i=0 p

ri
i and b = v

∏n
i=0 p

si
i , u and v units, ri,

si ≥ 0. Then if ti = min(ri, si),
∏
ptii is a gcd of a and b. If gcd(a, b) = 1 then we say a and b are

relatively prime. gcd(a0, . . . , an) is defined in an obvious way.
Let R be a UFD and let f =

∑n
i=0 aix

i ∈ R[x]. The content, denoted C(f), of f is
gcd(a0, . . . , an). Again this is unique only up to associates. If C(f) is a unit (which is the same as
saying C(f) = 1) then f is called primitive.

Exercise 2.10. Show that if R is a UFD and a ∈ R then C(af) = aC(f).

Lemma 2.11 (Gauss’ Lemma). If R is a UFD and f , g ∈ R[x] then C(fg) = C(f) C(g). In
particular the product of primitive polynomials is primitve.

Proof. Let a = C(f) and b = C(g). Then f = af1 and g = bg1, for some f1 and g1 ∈ R[x] which
are primitive. Note fg = abf1g1. By the exercise it is enough to show f1g1 is primitive. Let
f1 =

∑n
i=0 aix

i and g1 =
∑m

i=0 bix
i, then f1g1 =

∑m+n
i=0 cix

i, where ck =
∑

i+j=k aibj . Suppose
f1g1 is not primitive, then there is an irreducible element p such that p | ci for all i. Since
f1 is primitive, there is a smallest s such that p - as and a smallest t such that p - bt. Now
p | cs+t = a0bs+t + · · · + asbt + · · · + as+tb0. This implies p | asbt (since it divides all other
terms on both sides). But since p is irreducible and hence prime, this implies p | as or p | bt, a
contradiction.

Lemma 2.12. Let R be a UFD with quotient field F and let f and g be primitive polynomials in
R[x]. Then f and g are associates in R[x] iff they are associates in F [x].

Proof. Let f and g be associates in F [x]. Since F [x] is an integral domain, Theorem 2.1(6) there is
a unit u ∈ F [x] such that f = ug. Units in F [x] are just the nonzero elements of F . Hence u = b/c
for some b, c ∈ R, c 6= 0. So cf = bg. Since C(f) and C(g) are units in R,

c ≈ cC(f) ≈ C(cf) ≈ C(bg) ≈ bC(g) ≈ b

where a ≈ b means a and b are associates. Hence b = vc for some unit v ∈ R and so cf = bg = vcg.
Since c 6= 0, f = vg, showing f and g are associates in R[x].

The converse is easy.

Theorem 2.13 (This is also called Gauss’ Lemma). Let R be a UFD with quotient field F and
let f be a primitive polynomial of positive degree in R[x]. Them f is irreduible in R[x] iff it is
irreducible in F [x].

Proof. Suppose f is irreducible in R[x] but f = gh in F [x] with the degrees of g and h positive.
Then

g =
n∑
i=0

(ai/bi)xi and h =
m∑
i=0

(ci/di)xi
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with ai, bi, cj , dj ∈ R and bi 6= 0 6= dj . Let b = b0b1 · · · bn and for each i let b∗i = b/bi. Of course b∗i
is in R. Let g1 =

∑n
i=0 aib

∗
ix
i ∈ R[x]. Then g1 = ag2 with a = C(g1) and g2 is primitive in R[x].

Now
g = (1/b)g1 = (a/b)g2

and deg g = deg g2. Similarly h = (c/d)h2 with c, d ∈ R, h2 primitive in R[x] and deg h = deg h2.
Hence f = gh = (a/b)(c/d)g2h2, so bdf = acg2h2. Since f is primitive and g2h2 is primitive by
Gauss’ Lemma,

bd ≈ bdC(f) ≈ C(bdf) ≈ C(acg2h2) ≈ acC(g2h2) ≈ ac.

So bd and ac are associates in R[x] which implies f and g2h2 are associates in R[x]. So f is reducible
in R[x], a contradiction. So f is irreducible in F [x].

Conversely suppose f is irreduible in F [x] but f = gh in R[x]. This is still a factorization in
F [x] so either g or h is a unit in F [x]. The units of F [x] are just the nonzero constant elements of
F so one, say g, is constant (and in R). Now C(f) = gC(h). Since f is primitive, g must be a unit
in R and so in R[x]. Therefore f is irreducible in R[x].

Theorem 2.14. R is a UFD iff R[x] is.

Proof. Assume R is a UFD. We will first show that every f ∈ R[x] can be factored into irreduibles
and then prove the uniqueness. As usual let f = cf1, c = C(f), f1 primitive. Since R is a UFD,
c can be uniquely factored uniquely into irreducibles, so we only need to factor f1. So switching
notation we assume the f is a primitive. We may also assume deg f > 0.

Now F [x] is a UFD (since it is a Euclidean domain) and so f can be factored into irreducibles
in F [x]. Using the proof of the second version of Gauss’s Lemma, f can be factored in R[x] and
the factors are multiples by elements in F of the factors in F [x]. Since the content of f is 1, the
content of each of these factors must be 1. So by the last theorem each is irreducible in R[x].

For the uniquess suppose f = g1 · · · gr = h1 · · ·hs are two factorizations of f into irreducibles.
Since the content of f is 1, the content of each gi and hj is 1. So they are irreducible in F [x] by
Gauss. Since F [x] is a UFD, r = s and, after renumbering, gi and hi are associates in F [x], so
gi = (a/b)hi, for some nonzero a and b ∈ R. So bgi = ahi. The content of the left side is b and of
the right side is a. Hence a = ub, for a unit u ∈ R. Thus gi = uhi so gi and hi are associates in
R[x], completing the proof.

Corollary 2.15. If F is a field then F [x1, . . . , xn] is a UFD.

Corollary 2.16. If F is a field then F [x1, x2, . . .] is a UFD.

16
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2.5 Irreducibility Tests

Theorem 2.17 (Eisentein criterion). Let R be a UFD with quotient field F . Let

f(x) = anx
n + · · ·+ a1x+ a0

be in R[x]. If there exists a prime p of R such that p divides all the coeffients except the highest,
and p2 - a0, that is,

p | ai , i = 0, . . . , an−1, p - an, p2 - a0,

then f is irreducible in F [x]. If f is primitive it is also irreducible in R[x].

Proof. f = C(f)f1 for some primitive polynomial f1. So f and f1 are associates in F [x] since C(f)
is a unit of F . This implies f is irreducible in F [x] iff f1 is. So by the second version of Gauss’
Lemma, it suffices to show f1 is irreducible in R[x]. Suppose f1 = gh, g, h ∈ R[x], where

g = brx
r + · · ·+ b0, deg g = r ≥ 1

h = csx
s + · · ·+ c0, deg h = s ≥ 1.

Since p - an, p - C(f), so if we write f1 =
∑n

i=0 a
∗
ix
i, then the a∗i have the same divibility properties

with respect to p as the ai’s. Since p | a∗0 = b0c0, it divides one of them; say b0. Since p2 - a∗0, p - c0.
p cannot divide every bi since otherwise p would divide g and hence f1 = gh. Let k be the least
integer not divisible by p. So p | bi, i < k and p - bk. Since r < n, k < n. Now

a∗k = b0ck + b1ck−1 + · · · bk−1c1 + bkc0.

This implies p | bkc0, a contradiction.

Exercises 2.18.

1. Show that 2x5 − 6x3 + 9x2 − 15 is irreducible in both Z[x] and Q[x].

2. Let f = y3 + x2y2 + x3y + x ∈ R[x, y], where R is a UFD. Show that f is irreducible in
R[x, y]. (Hint: view R[x, y] as (R[x])[y] and note that x is irreducible (and hence prime) in
R[x].)

3. Let p be a prime in Z and f = xp−1
x−1 =

∑p
k=0

(
p
k

)
xk. Show that f is irreducible in Z[x].

(Hint: show that g(x) = f(x+ 1) is irreducible and use this to show f is irreducible.)

17



3 MODULES

3 Modules

3.1 Basics

Let R be a ring. An R-module is an algebra M with operations +, −, 0, such that 〈A; +,−, 0〉 is
an abelian group and for each r ∈ R there is a unary operation a 7→ ra such that for all r, s ∈ R
and a, b ∈M ,

r(a+ b)a = ra+ rb

(r + s)a = ra+ sa

(rs)a = r(sa)

If 1 ∈ R and 1a = a then M is a unitary R-module. The student can show that 0a = 0 (note here
the first 0 is the zero of R and the second is the zero of M . Also r(−a) = −ra. The notation RM
means M is a left R module. Right R-modules are defined in the obvious way and denote MR.

Unless otherwise stated, we will assume R has a 1 and modules are unitary.

Example 3.1.

(a) Each abelian group is a Z module (in an obvious way).

(b) A vector space V over a field F is an F -module.

(c) Column vectors of length n with entries in R are a module over Mn(R), the ring of n × n
matricies.

(d) R itself is both a left and a right R-module, RR and RR. I ⊆ R is a left idea if and only if it
is a submodule of RR.

(e) Let F be a field, V a vector space over F and T : V → V a linear transformation on V . Then
V is a F [x]-modules under the action f(x)v = f(T )v.

Just as for abelian groups, the congruence associated with a module homomorphism ϕ : A→ C
is determined by f−1(0), which is a submodule (as you can easily check). Conversely if B is a
sumbmodule of A, we can form the quotient module A/B in the usual way. The usual isomorphism
theorems hold; see Dummit and Foote [1], section 10.2.

Free modules can be defined in the usual way: If M is an R module and X ⊆ M , then M is
freely generated by X (or M is free over X) if M is generated by X and if ϕ : X → N (N
another R-module) then ϕ can be extended to a homomorphism of ϕ̄ : M → N .

As in groups, we call a module M cyclic if it is one-generated; that is, there is an element
a ∈M such that the smallest submodule containing a, which is

Ra := {ra : r ∈ R}

is M . One easily verifies that the map r 7→ ra is an R-module homomorphism of RR onto Ra = M .
The kernel of this map is called the annihilator of a and is denoted ann a; thus ann a := {r ∈ R :
ra = 0} and so

Ra ∼= R/ ann a

18



3.2 Finitely Generated Modules over a PID 3 MODULES

The above homomorphism also shows that RR is the free R-module on the single generator 1. In
fact free R-modules are particularly simple to describe: they are the direct sums of copies of RR,
as you will get to show in the exercises.

Exercises 3.2.

1. If X and Y are sets of the same cardinality (that is, there is a one-to-one function from X
onto Y ) then any free R-module over X is isomorphic to any free R-module over Y .

2. Let Rn be n-tuples of elements of R, as usual. This is an R-module in the obvious
way: r(x1, . . . , xn) = (rx1, . . . , rxn) (dah). This module is usually denoted RR

n. Let
ei = (0, . . . , 0, 1, 0, . . . 0), 1 in the ith position and X = {e1, . . . , en}. Then RR

n is a free
R-module over X. In particular, every vector space over a field F is a free F -module. The
free abelian group on n generators is isomorphic to Z.

3. Now consider RR
ω. Let ei = (0, . . . , 0, 1, 0, . . .), 1 in the ith position and X = {e1, e2, . . .}.

The submodule generated by X consists of all ω-tuples which are 0 in all but finitely many
coordinates (this is called the direct sum). Show this submodule is free over X.

4. Note that the ei in the exercises above generate RR
n and RR

ω. Also
∑
xiei =

∑
yiei

implies xi = yi for all i. Generators of a module that have these properties are called a base.
Show that if M has a basis with n elements, then M ∼= RR

n and hence is a free R-module.

5. SupposeMi, i = 1, . . . , n are submodules of a moduleM such that the submodule genereated
by the Mi’s is all of M , that is, M = M1 + · · ·+Mn. Also assume

Mi ∩ (M1 + · · ·+Mi−1 +Mi+1 + · · ·+Mn) = 0

for i = 1, . . . , n. Show that M is isomorphic to the direct product (or direct sum, they’re the
same for finite products) of the Mi’s.

Every vector space over a field F has a basis and so is a free F -module. But in general not all
modules are free. Also there are rings R such that RR

n ∼= RR
m for distinct n and m; see exercise

27 of section 10.3 of Dummit and Foote [1]. But for commutative rings this is not possible:

Theorem 3.3. If R is commutative, then RR
n ∼= RR

m implies n = m.

Proof. See Chapter 3 of Jacobson [4].

3.2 Finitely Generated Modules over a PID

Theorem 3.4 (Dedekind). Let R be a PID. Every submodule of a free R-module is free. If M is
free of rank n, then every submodule is free of rank at most n.

Proof. Jacobson [4] gives an elementary, computational proof of this in the finite rank case. Hunger-
ford [3] proves the full theorem.
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Exercises 3.5.

1. Show that if A is an n-generated module over a PID and B is a submodule of A, then B
can be generated by a set with at most n elements.

Let R be a PID and let A and B ∈ Mm,n(R). A and B are equivalent if there are invertible
matrices P ∈ Mm(R) and Q ∈ Mn(R) such that B = PAQ.

Theorem 3.6. If A ∈ Mm,n(R), R a PID, the A is equvalent to a diagonal matrix

diag(d1, d2, . . . , dr, 0, . . . , 0).

where di 6= 0 and di | dj if i ≤ j. The di’s are unique up to associates.

This diagonal matrix is called the Smith normal form of A. The di’s are called the invariant
factors of A. In class we will follow the proof given in Jacobson [4].

The uniqueness in the above theorem follows from the relation between the invariant factors
and the determinental divisors, which we now define. For A ∈ Mm,n(R) we define the rank of
A to be the greatest r such that A has an r × r submatrix with nonzero determinant. ∆i, the
ith determinental divisor of A is the gcd of the determinants of the i × i submatrices of A,
i = 1, . . . , r. The uniqueness is shown by proving the following.

∆i = d1 · · · di, i = 1, . . . , r. (3.1)

Defining ∆0 = 1, this can be writen as

di = ∆i/∆i−1, i = 1, . . . , r, (3.2)

Note the Laplace expansion theorem implies ∆i−1 | ∆i.

Theorem 3.7 (Cauchy-Binet). Let R be a commutative ring and let A ∈ Mm,n(R) and B ∈
Mn,k(R), α = (α1, . . . , αr) be a sequence with 1 ≤ α1 < · · · < αr ≤ m, β = (β1, . . . , βr) be a
sequence with 1 ≤ β1 < · · · < βr ≤ k. For any matrix C ∈ Mn, k(R), let C[α, β] be the r × r
submatrix of C lying at the intersection of the α rows and β columns. Then

detAB[α, β] =
∑
γ

detA[α, γ] detB[γ, β, ]

where the sum is over γ = (γ1, . . . , γn) with 1 ≤ γ1 < · · · < γr ≤ n.

Corollary 3.8. Up to associates, equivalent matrices have the same determinental divisors.

Proof. If d is the rth determinental divisor of A, the Cauchy-Binet Theorem shows that d divides
all determinates of r× r submatrices PAQ. Hence d divides the rth determinental divisor of PAQ.
Since similarity is a symmetric relation, this shows similar matrices have the same determinental
divisors, up to associates.
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Note that (3.1) and (3.2) follow from this corollary and from Theorem 3.6. And of course the
uniqueness of the invariant factors (the di’s), and that equivalent matrices have the same invariant
factors, up to associates, follow from (3.2). So we only need to prove the first part of Theorem 3.6,
which we will do in class.

Since R is a PID each of the invariant factors can be written as

di = pei1
1 · · · p

eim
m

where p1, . . . , pm are distinct primes in R. Since di | di+1, eik ≤ ei+1,k. A prime power peik
k with

eik > 0 is called an elementary divisor of A. The list of elementary divisors is the list of all
of them including repeats. For example, suppose R = Z and d1 = 23 · 3, d2 = 24 · 33 · 52 · 7, and
d3 = 24 · 33 · 55 · 72. Then the list of elementary divisors is

23, 24, 24, 3, 33, 33, 52, 55, 7, 72.

The invariant factors can be recovered from the list of elementary divisors and the rank of A. So if
the rank of B is four and it has the above list of elementary divisors, then there will be 4 invariant
factors. d4 must be the product of all the highest prime powers: d4 = 24 · 33 · 55 · 72. d3 is the
product of the highest remaining prime powers: d3 = 24 · 33 · 52 · 7. And d2 = 23 · 3. d1 is the
product of the rest. But there aren’t any so it is the product of the empty set: d1 = 1.

Exercise 3.9.

1. Let R be a Euclidean domain and let SLn(R) be all n × n matrices over R with determi-
nant 1. In this exercise you will show that the group SLn(R) is generated by the elementary
matrices of the first kind (those of the form In + bEi,j , i 6= ji). First note the the elementary
transformation used in putting a matrix into Smith Normal Form of the form no D(u) was
used. The elementary matrix corresponding to interchanging two rows (or columns) has de-
terminant −1 but if we multiply one of the rows by −1, then the determinant is 1 and this
elementary operation (interchanging two rows and multiplying one of them by −1) can be
used (in the proof of the Smith Normal Form) instead of just interchanging the rows. You
can take this as given—you do not need to write it up.

a. Let u be a unit is R. Show that [
0 u
−u−1 0

]
can be written as a product of three elementary matrices of the first kind, each of which
has either u or −u−1 as its single off-diagonal entry. Note the modified permutation
matrix described above is this matrix with u = 1.

b. Show that if u is a unit, then [
u 0
0 u−1

]
is a product of two matrices from part a.
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c. Using part a and the comments above we see that A can be put into Smith Normal
Form using elementary matrices of the first kind. Now use the matrices of part b to
modify the Smith Normal Form into the identity matrix and show this implies that A
is a product of elementary matrices of the first kind.

Let M be an R-module, N a submodule of M and a ∈ M . The annihilator of a is ann a =
annR a = {r ∈ R : ra = 0}; annRN = {r ∈ R : rN = 0}. The torsion submodule of M is
torM = {m ∈M : ann a 6= 0}. The reader can show ann a is a left ideal of R, annN is a two-sided
ideal of R and torM is a submodule. Also show that R/ ann a ∼= Ra. M is a torsion module if
torM = M and M is torsion free if torM = 0. When R is a PID, ann a = (r), for some r and we
say a has order r. Of course any associate of r is also “the” order of a. Note that in an abelian
group, thought of as a Z-module, order agrees with the usual nottion except an element of order n
also has order −n.

Theorem 3.10. A finitely generated torsion free module over a PID is free.

We will prove this in class following Hungerford [3].

Theorem 3.11. If M is a finitely generated module over a PID R, then M = torM ⊕ F , where
F is a finitely generated free R-module.

Proof. Let T = torM . Then M/T is torsion free: if a+ T ∈M/T and r(a+ T ) = T then ra ∈ T .
But this implies sra = 0 for some s 6= 0 in R. But then a ∈ torM = T , and so a + T = T . Of
course M/T is finitely generated since M is. By Theorem 3.10, M/T is free. Let x1, . . . , xk be a
free generating set, that is, a basis for M/T and let ϕ : M �M/T be the natural homomorphism.
Choose yi ∈ M with ϕ(yi) = xi. Let F be the submodule of M gnerated by the yi’s. Let
ψ : M/T →M be the homomorphism that extends ψ(xi) = yi. Note ϕ(ψ(xi)) = ϕ(yi) = xi and so
ϕ ◦ ψ is the identity homomorphism on M/T . So F ∼= M/T and thus is free.

If m ∈ M let a = ψ(ϕ(m)) ∈ F . Since ϕ ◦ ψ is the identity, ϕ ◦ ψ ◦ ϕ = ϕ. This implies
ϕ(m− a) = 0, and so m− a ∈ T . Thus

m = a+ (m− a) ∈ F + T

It is easy to verify that F ∩ T = 0. Thus M = F ⊕ T , as desired.

Let M be a torsion module over a PID R. For p a prime in R let

M(p) = {a ∈M : pia = 0, for some i}.

M(p) is called the p-primary component of M .

Theorem 3.12. Let M be a torsion module over a PID R. Then M(p) is a submodule of M and
there is a set S of primes in R such that M =

⊕
p∈SM(p). If M is finitely generated and M(p) 6= 0

for p ∈ S then S is finite.
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Proof. That M(p) is a submodule is left as an exercise.
We can take S to be an SDR (system of distict representatives) of the set of all primes in R

under the equivalence relation “p is an associate of q”.
Let a ∈ M and let r be the order of a so that ann a = (r). Since R is s UFD, we can write

r = upn1
1 · · · p

nk
k for distinct primes in S, ni > 0 and u a unit. Let ri = r/pni

i . Note r1, . . . , rk are
relatively prime. Since R is a PID, this implies 1 = s1r1 + · · ·+ skrk. Thus

a = s1r1a+ · · ·+ skrka.

Since pni
i siria = sira = 0, siria ∈M(p). Hence a ∈

∑
p∈SM(p).

Suppose a ∈ M(p) ∩
∑

q 6=pM(q). Then pma = 0 for some m ≥ 0 and a = a1 + · · · + at, where
ai ∈ M(pi), pi primes distinct from each other and from p. Let pmi

i ai = 0 and let d = pm1
1 · · · p

mt
t

and note da = 0. Now d and pm are relatively prime so there exists r, s ∈ R with 1 = rpm + sd.
But then a = rpma+ sda = 0, showing M(p) ∩

∑
q 6=pM(q) = 0.

Theorem 3.13. Let M be a finitely generated module over a PID R.

1. M is isomorphic to the direct sum of finitely many cyclic modules:

M = Rk ⊕Ra1 ⊕ · · · ⊕Ram
∼= Rk ⊕R/(d1)⊕ · · · ⊕R/(dm)

= Rk ⊕R/ ann a1 ⊕ · · · ⊕R/ ann am

where the di’s are nonzero, nonunit elements of R and

d1 | d2 | · · · | dm.

2. M is isomorphic to the direct sum of finitely many primary cyclic modules:

M ∼= Rk ⊕R/(pn1
1 )⊕ · · · ⊕R/(pnt

t )

where p1, . . . pt are (not necessarily distinct) primes and ni ≥ 1.

Proof. We will prove the first part in class using the Smith Normal Form. The second part can be
derived from the first using Theorem 3.12 and Exercise 3.5.

The k in this theorem is called the free rank of M . The di’s are called the invariant factors
of M and the pni

i ’s are the elementary divisors of M . These determine M up to isomorphism:

Theorem 3.14. Let M1 and M2 be modules over a PID R.

1. M1
∼= M2 iff they have the same free rank and invariant factors (up to associates).

2. M1
∼= M2 iff they have the same free rank and elementary divisors (up to associates).
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3.3 Tensor Products

We will follow Dummit and Foote—they have a good explanation and lots of examples. Here we
will just repeat some of the important definitions and results.

Let MR be a right R module and RN be a left R module. Then M ⊗N = M ⊗RN , the tensor
product of M and N , is an abelian group (that is a Z-module) obtained as follows. First take the
free Z-module on the free generating set M × N . In this reguard, we are thinking of (m,n) as a
formal symbol; in particular (m,n) + (m′, n′) 6= (m + m′, n + n′). Take the subgroup of this free
abelian group generated by the elements

(m+m′, n)− (m,n)− (m′, n)
(m,n+ n′)− (m,n)− (m,n′)
(mr, n)− (m, rn)

Then M ⊗R N is the quotient of this free group modulo this subgroup. Let m⊗ n be the coset of
(m,n). This is called a simple tensor. The elements of M ⊗RN are finite sums of simple tensors
and are called tensors. Note tensors satisfy

(m+m′)⊗ n = m⊗ n+m′ ⊗ n
m⊗ (n+ n′) = m⊗ n+m⊗ n′

mr ⊗ n = m⊗ rn

If N and M are as above and L is an abelian group. A map ϕ : M ×N → L is middle linear
with respect to R or R-balanced if it is linear in each of its argments (this is called mulitlinear)
and ϕ(m, rn) = ϕ(mr, n). The natural map M ×N →M ⊗R N is balanced and universal for this
concept; that is, any balanced map can be factored through this.

Theorem 3.15. Let MR and RN be R modules. Let ι : M ×N →M ⊗RN be the natural map. If
ϕ : M×N → L is an R-balanced map into an abelian group L, then there is a group homomorphism
ϕ̄ : M ⊗R N → L such that the following diagram commutes:

N ×N M ⊗R N

L

ι

ϕ
ϕ̄

It is important to remember that m ⊗ n = m′ ⊗ n′ (or even m ⊗ n = m ⊗ n′) does not imply
m = m′ or n = n′. Every element of M ⊗R N is a sum of elements of the form m ⊗ n so these
elements generate M ⊗RN , but they are not a basis. This means that not every map from the set
of simple tensors into an abelian group L can be extended to a homomorphism. For example, if

f : MR →M ′R and g : RN → RN
′ (3.3)
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are homomorphisms, does the map m⊗n 7→ f(m)⊗g(n) extend to a homomorphism from M⊗RN
to M ′ ⊗R N ′? The answer in this case is yes, but requires a proof, which we leave for the student.
This important homomorphism is denoted f ⊗ g, so that (f ⊗ g)(m⊗ n) = f(m)⊗ g(n).

If R and S are rings, then M is a (S,R)-bimodule is M is a left S-module and also a right
R-module and, in addition

(sm)r = s(mr).

This is denoted SMR. If M is an (S,R)-bimodule and N is a left R-module, then M ⊗RN is a left
S module in a natural way. Namely, s(m ⊗ n) = sm ⊗ n. We showed in class how Theorem 3.15
can be used to show this works.

Theorem 3.16. Suppose f and g are homomorphism as in (3.3). Then there is a homomorphism
f ⊗ g : M ⊗R N → M ′ ⊗R N ′ such that (f ⊗ g)(m ⊗ n) = f(m) ⊗ g(n). If SMR and SM

′
R are

bimodules and f is a bimodule homomorphism, then f ⊗ g is an S module homomorphism.

Proof. Use Theorem 3.15.

Another use of Theorem 3.15 is to show that tensor products are associated; see Theorem 14 of
Dummit and Foote. Also tensor products distribute over direct sums. One consequence of this is
that if R is a subring of S, then, viewing SSR as a bimodule,

S ⊗R Rn ∼= Sn

(This uses that S⊗RR ∼= S under the map s⊗r 7→ sr, which is another application of Theorem 3.15.
When R is commutative every left module is a right module, and vice versa. In this case if Mi

are R-modules then
M1 ⊗R · · · ⊗RMk

makes sense and is an R-module.
The fact that the tensor product distributes over direct sums implies that if V and U are vector

spaces over a field F , of dimensions m and n respecitvely, then V ⊗F U is a vector space over F of
dimension nm. In summary, Fm ⊗F Fn ∼= Fmn.

3.3.1 Algebraic Integers

A complex number is an algebraic number if it is a root of a polynomial with coefficients in Q
(or equivalently Z). It is an algebraic integer if it is root of a monic polynomial over Z.

Theorem 3.17. α is an algebraic integer if and only if it is eigenvalue of a matrix A ∈ Mn(Z).

Theorem 3.18. The set of all algebraic integers form a ring.

Proof. Suppose α and β are algebraic integers. Then there are matrices A ∈ Mn(Z) and B ∈ Mm(Z)
and vectors v ∈ Cn and u ∈ Cm and such that

Av = αv Bu = βu
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Now A ⊗ B is a homomorphism (linear transformation) of Cn ⊗ Cm to itself. If e1, . . . , en is the
standard basis of Cn and e′1, . . . , e

′
m are the standard bases of Cn and Cm, respectively, then ei⊗ e′j

is a basis of Cn ⊗ Cm. Under this basis, ordered lexicographically, the matrix corresponding to
A ⊗ B is the Kronecker product of A and B, which is also denoted A ⊗ B. This consists of
n2 blocks, each of size m × m, of the form aijB. This is a straightforward calculation given in
Proposition 16 of Section 11.2 of Dummit and Foote. In particular A ⊗ B has integer entries and
so its eigenvalues are algebraic integers by Theorem 3.17.

Now we calculate

(A⊗B)(v ⊗ u) = Av ⊗Bu = αv ⊗ βv = αβ(v ⊗ u)

showing that v ⊗ u is an eigenvector of A ⊗ B with eigenvalue αβ. Thus algebraic integers are
closed under multiplication. To see that they are closed under addition, we calculate

(In ⊗B +A⊗ Im)(v ⊗ u) = v ⊗ βu+ αv ⊗ u = (α+ β)(v ⊗ u)

Thus α+ β is an eigenvalue of the integer matrix In⊗B +A⊗ Im and so an algebraic integer.

Exercises 3.19.

1. a. Show that if α is a nonzero algebraic number, then 1/α is also an algebraic number.
Hint: suppose f(α) = 0 where f(x) ∈ Q[x]. Start by dividing the equation f(α) = 0 by
αk, where k is the degree of f .

b. Show the if α is an algebra number then α = β/n is also an algebraic number for all
n 6= 0 in Z.

c. Show the α is an algebra number iff α = β/n for some algebraic integer and n ∈ Z.

d. Show that the algebraic numbers form a field.
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3.4 Projective, Injective and Flat Modules; Exact Sequences

This topic is covered well by Dummit and Foote. You should read their Section 10.5. Hungerford
also does a good job. Here we just present some highlights and exercises.

A sequence of homomorphisms

· · · → Xn−1
α−→ Xn

β−→ Xn+1 → · · ·

is said to be exact if the image of α equals the kernel of β at each Xn which has something to its
left and its right. An exact sequence of the form

0→ A
α−→ B

β−→ C → 0 (3.4)

is called a short exact sequence. Note this is equivalent to saying α is injective and β is surjective
and that α(A) = kerβ. We use A � B to indicate a monomorphism and B � C to indicate an
epimorphism.

Let V be a variety of algebras in the general sense. An algebra P is said to be projective
if for each A and B ∈ V, epimorphism f : A � B and homomorphism h : P → B, there is a
homomorphism g : P→ A with h = fg. Pictorially

P

A B
f

h
g

A homomorphism ρ from an algebra A to itself is called a retraction on A if ρ2 = ρ. We say
that B is a retract of A if B = ρ(A) for some retraction ρ on A.

Exercises 3.20.

1. If ρ is a retraction of A onto B, then ρ|B (ρ restricted to B) is the identity on B.

2. Prove the following are equivalent for an algebra P in a variety V:

(a) P is projective.
(b) If f : A � P is a epimorphism then there is a homomorphism g : P → A so that

fg(x) = x. Note this forces g to be a monomorphism.
(c) P is isomorphic to a retract of a free algebra in V.

3. Let R be a ring and assume now that V is the variety of all R-modules.

a. Show that if A and B are R-modules and if ρ : A → B is a retraction, then A has a
submodule C such that A = B ⊕ C and ρ(b, c) = b.
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b. Use this to show that an R-module is projective iff it is a direct summand of a free
R-module.

4. Let R be a PID. Use Theorem 3.4 to show that an R module is projective iff it is free. (We
only proved Theorem 3.4 in the finitely generated case, but you can use it anyway.)

5. Let F be the two-element field and let R = F × F be the direct product. Let P = {(x, 0) :
x ∈ F}. Show that P is projective but not free.

Note HomR(A,B) is an abelian group is an obvious way. Let D be another R-module. If
α : A → B is a homomorphism, let α′ : HomR(D,A) → HomR(D,B) be given by f 7→ f ′ = α ◦ f ,
for f ∈ HomR(D,A). This is a homomorphism of abelian groups. Now suppose that (3.4) is a
short exact sequence. Then the following sequence is exact:

0→ HomR(D,A) α′
−→ HomR(D,B)

β′
−→ HomR(D,C)

Note the last → 0 part is missing since β′ need not be onto. But if D is projective it is easy to see
that it is. The converse is also true so this is another characterization of projective modules.

What does “tensoring with D” do to short exact sequences, where now D is a right R-module.
Again assume that (3.4) is a short exact sequence. Then

D ⊗R A
1⊗α−−→ D ⊗R B

1⊗β−−→ D ⊗R C → 0

is exact. But this time we have a problem at the left end: 1⊗ α is not necessarily injective. If it is
injective for all injective maps α : A→ B for all A and B, then D is said to be a flat module.

Warning: the element notation a⊗ b can be misleading since it does not indicate the ring R.
For example, Z/2Z⊗Z Z ∼= Z, but Z/2Z⊗Z Q = 0, as we showed. So 1⊗ 1 = 0 in Z/2Z⊗Z Q but
1⊗ 1 6= 0 in Z/2Z⊗Z Z.

Exercises 3.21.

1. In this problem you will show Q⊗Z Q ∼= Q as Z-modules.

a. Show that ϕ : Q⊗Z Q→ Q given by ϕ(r⊗ s) = rs for r and s ∈ Q is a homomorphism.
To do this you need to find the appropriate middle linear map.

b. Show that if r and s ∈ Q then r ⊗ s = 1 ⊗ rs. This is a little harder that it looks: if
we were working over Q ⊗Q Q then we could just bring the r to the other side. But in
Q ⊗Z Q we can only move integers over. Nevertheless a trick similar to the one I used
in class showing Z/2Z⊗Z Q = 0 works.

c. Show that r 7→ 1⊗ r is a homomorphism and is the inverse of ϕ.
(By the way, this same argument shows that if K is the field of fractions of an integral
domain R, the K⊗RK ∼= K. On the other hand C⊗R C 6∼= C. You do not need to prove
either of these.)
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2. Suppose R is commutative and I and J are ideals of R. Show that

R/I ⊗R R/J ∼= R/(I ∨ J).

(I∨J is the ideal generated by I and J . It is often written I+J .) For the map R/I⊗RR/J →
R/(I∨J) you need to use the usual trick of making a middle linear map R/I×RR/J → R/(I∨
J). For the other direction map R → R/I ⊗R R/J by r 7→ r(1̄⊗ ¯̄1), where 1̄ = 1 + I ∈ R/I
and ¯̄1 = 1 + J ∈ R/J , and show that I ∨ J is contained in the kernel.

3. Using the previous problem (and the fundamental theorem of abelian groups and that tensor
products distribute over direct sum; Theorem 14 of Dummit and Foote) describe A ⊗Z B,
where A and B are finite abelian groups. This may be a little vague so, if you prefer, you can
find A⊗Z B, where A = Z/4Z⊕ Z/16Z and B = Z/8Z⊕ Z/27Z.

4. Let B1 and B2 be submodules of the left R-module A. Let D be a flat right R-module.
Show

D ⊗R (B1 ∨B2) = (D ⊗R B1) ∨ (D ⊗R B2)
D ⊗R (B1 ∩B2) = (D ⊗R B1) ∩ (D ⊗R B2)

proving the map B 7→ D⊗RB is a lattice homomorphism of Sub(A)→ Sub(D⊗RA). Hint:
the hardest part is proving the inclusion (D ⊗R B1) ∩ (D ⊗R B2) ⊆ D ⊗R (B1 ∩B2). To see
this first note B1/(B1 ∩B2) ∼= (B1 ∨B2)/B2. Hence we have the short exact sequence

0→ B1 ∩B2 → B1
ϕ−→ (B1 ∨B2)/B2 → 0

and hence
0→ D ⊗R (B1 ∩B2)→ D ⊗R B1

1⊗ϕ−−→ D ⊗ (B1 ∨B2)/B2 → 0

is exact so ker 1⊗ϕ = D⊗R(B1∩B2). Use this to show (D⊗RB1)∩(D⊗RB2) ⊆ D⊗R(B1∩B2).
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4 Basics

Since we view 1 as a fundamental (nullary) operation of a ring, every ring has a unique smallest
subring, the subring generated by 1. This subring is called the prime subring. Note the prime
subring is isomorphic to Z/nZ, for some n > 0, or to Z. In the former case we say the ring R has
characteristic n; in the latter case R is said to have characteristic 0. We denote this as char(R).
Also, since Z/nZ is not an integral domain unless n is a prime, the characteristic of a field is either
a prime or 0.

If F is a subfield of a field K, then K is a vector space over F . The dimension is denoted
[K : F ] = dimF (K).

If f(x) ∈ F [x], f may not have any roots in F ; for example, x2 − 2 ∈ Q[x]. But x2 − 2 does
have a root in R. This will be one of the primary foci of our study of fields.
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APPENDIX

A Prerequisites

This section briefly lists some prerequisites from set theory needed in order to read the main text.
It consists primarily of paraphrased excerpts from the excellent introductory textbook by Enderton,
“Elements of Set Theory” [2].

A.1 Relations

Probably the reader already has an idea of what is meant by an “ordered pair,” 〈x, y〉. It consists of
two elements (or sets) x and y, given in a particular order. How to make this notion mathematically
precise is not quite so obvious. According to [2], in 1921 Kazimierz Kuratowski gave us the definition
in general use today: given two sets x and y, the ordered pair 〈x, y〉 is defined to be the set
{{x}, {x, y}}. It is not too hard to prove that this definition captures our intuitive idea of ordered
pair – namely, 〈x, y〉 uniquely determines both what x and y are, and the order in which they
appear. Indeed, it is a theorem (Theorem 3A of [2]) that 〈u, v〉 = 〈x, y〉 iff u = x and v = y.

A relation is a set of ordered pairs. Thus, if X is a set, a relation R on X is simply a subset
of the Cartesian product; that is,

R ⊆ X ×X := {〈x1, x2〉 : x1, x2 ∈ X}.

For a relation R, we sometimes write x R y in place of 〈x, y〉 ∈ R. For example, in the case of
the ordering relation < on the set R of real numbers, < is defined to be the set {〈x, y〉 ∈ R × R :
x is less than y}, and the notation “x < y” is preferred to “〈x, y〉 ∈<.” See Enderton [2] for more
details.

For a relation R, we define the domain of R (domR), the range of R (ranR), and the field
of R (fldR) by

x ∈ domR ⇔ ∃y 〈x, y〉 ∈ R,
x ∈ ranR ⇔ ∃t 〈t, x〉 ∈ R,

fldR = domR ∪ ranR.

A relation R on a set A is called reflexive iff x R x for all x ∈ A; symmetric iff whenever
x R y then also y R x; transitive iff whenever x R y and y R z, then also x R z. A relation is an
equivalence relation iff it is a binary relation that is reflexive, symmetric, and transitive. Given
a set A, we denote the set of all equivalence relations on A by Eq(A).

A.2 Functions

A function (or mapping) is a relation F such that for each x in domF there is only one y such
that xF y.

The following operations are most commonly applied to functions, are sometimes applied to
relations, but can actually be defined for arbitrary sets A, F , and G.
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(a) The inverse of F is the set

F−1 = {〈u, v〉 | v F u} = {〈u, v〉 | 〈v, u〉 ∈ F}.

(b) The composition of F and G is the set

F ◦G = {〈u, v〉 | ∃t (uG t & t F v)} = {〈u, v〉 | ∃t (〈u, t〉 ∈ G & 〈t, v〉 ∈ F )}.

(c) The restriction of F to A is the set

F � A = {〈u, v〉 | uF v & u ∈ A} = {〈u, v〉 | 〈u, v〉 ∈ F & u ∈ A}.

(d) The image of A under F is the set

F JAK = ran (F � A) = {v | (∃u ∈ A) 〈u, v〉 ∈ F}.

F JAK can be characterized more simply when F is a function and A ⊆ domF ; in this case

F JAK = {F (u) | u ∈ A}.

In each case we can easily apply a subset axiom to establish the existence of the desired set.
Specifically,

F−1 ⊆ ranF × domF, F ◦G ⊆ domG× ranF, F � A ⊆ F, F JAK ⊆ ranF.

(A more detailed justification of the definition of F−1 would go as follows: By a subset axiom there
is a set B such that for any x,

x ∈ B ⇔ x ∈ ranF × domF & ∃u ∃v (x = 〈u, v〉 & 〈v, u〉 ∈ F ).

It then follows that
x ∈ B ⇔ ∃u ∃v (x = 〈u, v〉 & 〈v, u〉 ∈ F ).

This unique set B we denote by F−1.)

Example A.1. Let
F = {〈∅, a〉, 〈{∅}, b〉}.

Observe that F is a function. We have F−1 = {〈a, ∅〉, 〈b, {∅}〉}. Thus, F−1 is a function iff a 6= b.
The restriction of F to ∅ is ∅, but F � {∅} = {〈0, a〉}. Consequently, F J{∅}K = {a}, in contrast to
the fact that F ({∅}) = b.

Theorem A.2. Assume that F : A→ B, and that A is nonempty.

(a) There exists a function G : B → A (a “left inverse”) such that G ◦ F is the identity function
idA on A iff F is one-to-one.

(b) There exists a function H : B → A (a “right inverse”) such that F ◦H is the identity function
idB on B iff F maps A onto B.

Axiom of Choice 1. For any relation R there is a function H ⊆ R with domH = domR.
With this axiom we can prove the sufficiency direction of part (b) of the Theorem above: take

H to be a function with H ⊆ F−1 and domH = domF−1 = B. Then H does what we want:
Given any y ∈ B, we have 〈y,H(y)〉 ∈ F−1 hence 〈H(y), y〉 ∈ F , and so F (H(y)) = y.
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