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C H A P T E R O N E

Basic Concepts

1.1 Algebras and Operations

An algebra is a set endowed with operations. algebras are the fundamental object
with which we shall deal, so our first step is to make the preceding sentence
precise. Let A be a set and n be a natural number. An operation of rank n on
A is a function from An into A. Here we have used An to denote the n-fold direct
power of A—the set of all n-tuples of elements of A. By a (finitary) operation
on A we meanan operation of rank n on A for some natural number n. Because
virtually every operation taken up in this book will be finitary, we will generally
omit the word “finitary” and use “operation” to mean finitary operation. If A is
nonempty, then each operation on A has a unique rank. Operations of rank 0 on
a nonempty set are functions that have only one value; that is they are constant
functions of a rather special kind. We call operations of rank 0 constants and
identify them with their unique values. Similarly, we call operations of rank 1 on
A unary operations and identify them with the functions from A into A. Binary
and ternary operations are operations of rank 2 and 3, respectively. We use n-
ary operation, operation of rank n and operation of arity n interchangeably.
It is important to realize that the domain on an operation of rank n on A is the
whole set An. Functions from a subset of An into A are called partial operations
of rank n on A. Subtraction is a binary operation on the set Z of integers, but it
is only a partial operation on the set ω of natural numbers.

The fundamental operations most frequently encountered in mathematics
have very small ranks. A list of these important operations certainly includes
addition, subtraction, multiplication, division, exponentiation, negation, conju-
gation, etc., on appropriate sets (usually sets of numbers, vectors, or matrices).
This list should also include such operations as forming the greatest divisor of
two natural numbers, the composition of two functions, and the union of two
sets. Of course, one is almost immediately confronted with operations of higher
rank that are compounded from these. Operations of higher finite rank whose
mathematical significance does not depend on how they are built up from op-
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2 Chapter 1 Basic Concepts

erations of smaller rank seem, at first, to be uncommon. Such operations will
emerge later in this work, especially in Chapter 4 and in later volumes. How-
ever, even then most of the operations will have ranks no larger than 5. While
there is some evidence that operations of such small rank provide adequate scope
for the development of a general theory of algebra, why this might be so remains
a puzzle.

To form algebras, we plan to endow sets with operations. There are several
ways to accomplish this. We have selected one that, for most of our purposes,
leads to clear and elegant formations of concepts and theorems.

DEFINITION 1.1. An algebra is an ordered pair 〈A,F〉 such that A is a nonempty
set and F = 〈Fi : i ∈ I〉 where Fi is a finitary operation on A for each i ∈ I. A is
called the universe of 〈A,F〉, Fi is referred to as a fundamental or basic opera-
tion of 〈A,F〉 for each i ∈ I, and I is called the index set or the set of operation
symbols of 〈A,F〉.

The reason we have endowed our algebras with indexed systems of opera-
tions rather than with mere sets of operations is so that we have a built-in means
to keep the operations straight. From the customary viewpoint, rings have two
basic binary operations labeled “addition” (or +) and “multiplication” (or ·). For
the development of ring theory, it is essential to distinguish these operations from
each other. In effect, most expositions do this by consistent use of the symbols
+ and ·: The actual binary operations in any given ring are indexed by these
symbols. This is why we have chosen to call the set of 〈A,F〉 its set of operation
symbols. The distinction between operation symbols and operations is impor-
tant, and we will have much to say regarding it in §4.11.

The notation implicit in the definition above is unwieldly in most situations.
Quite often the set of operation symbols is small. For example, ring theory is
accommodated by the operation symbols +, ·, and− (this last symbol is intended
to name the unary operation of negation). But surely

〈Z,〈Fi : i ∈ {+, ·,−}〉〉

is an uncomfortable way to display the ring of integers. In this situation and
others like it, we find

〈Z,+, ·,−〉

much more acceptable. Notice that in this last display +, ·, and − are no longer
operation symbols but operations; exactly which operations they are is clear from
the context.

As a general convention, we use uppercase boldface letters A, B, C, · · · to
denote algebras and the corresponding uppercase letters A, B, C, · · · to denote
their universes, attaching subscripts as needed. Thus, in most uses, A is the
universe of A, B3 is the universe of B3, and so on. If Q is an operation symbol of
A, then we use QA to stand for the fundamental operation of A indexed by Q; we
say that Q denotes QA or that QA is the interpretation of Q in A. Whenever the
cause of clarity or the momentum of customary usage dictates, we will depart
from these conventions.
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Given an algebra A with index set I, there is a function ρ called the rank
function from I into the set ω of natural numbers defined by:

ρ(Q) is the rank of QA for all Q ∈ I.

The rank function of an algebra is also referred to as its similarity type or, more
briefly, its type. Algebras A and B are said to be similar if and only if they have
the same rank function. The similarity relation between algebras is an equiva-
lence relation whose equivalence classes will be called similarity classes. Most
of the time (with some important exceptions), only algebras of the same similar-
ity type will be under consideration. In fact, this hypothesis that all algebras at
hand are similar is so prevalent that we have left it unsaid, even in the statement
of some theorems.

The rank functions are partially ordered by set inclusion (that is, by extension
of functions). This ordering can be imposed on the similarity class as well. For
individual algebras, we say that A is a reduct of B (and that B is an expansion
of A) if and only if A and B have the same universe, the rank function of A is
a subset of the rank function of algB, and QA and QB for all operation symbols
Q of A. In essence, this means that B can be obtained by adjoining more basic
operations to A. For example, each ring is an expansion of some Abelian group.

We close this section with a series of examples of algebras. Besides illus-
trating the notions just introduced, these examples specify how we formalize
various familiar kinds of algebras and serve as resources for later reference. In
formulating the examples, we use the following operation symbols:

Constant symbols: e, 1, 0, and 1′

Unary operation symbols: −, −1, −, ∪, and fr for each r ∈ R

Binary operation symbols: +, ·, ∧, ∨

Semigroups

A semigroup is an algebra A = 〈A, ·A〉 such that:(
a ·A b

)
·A c = a ·A

(
b ·A c

)
for all a,b,c ∈ A.

Thus a semigroup is a nonempty set endowed with an associative binary opera-
tion. A typical example of a semigroup is the collection of all functions from X
into X , where X is any set, with the operation being composition of functions.
A more sophisticated example is the collection of all n× n matrices of integers
endowed with matrix multiplication.

Monoids

A monoid is an algebra A = 〈·A,eA〉 such that 〈A, ·A〉 is a semigroup and

a ·A eA = eA ·A a = a for all a ∈ A.
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To obtain some concrete examples, we can let e denote the identity function in
our first example of a semigroup and the identity matrix in the second example.
Although every monoid is an expansion of a semigroup, not every semigroup can
be expanded to a monoid.

Groups

A group is an algebra A = 〈A, ·,−1 ,e〉 such that 〈A, ·,e〉 is a monoid and

a ·a−1 = a−1 ·a = e for all a ∈ A.

(The reader will have observed that the superscript A has grown tiresome and
been dropped.) A typical example of a group is the collection of all one-to-one
functions from X onto X (such functions are called permutations of X), where
X is an arbitrary set and the operations are composition of functions, inversion of
functions, and the identity function. A more intricate example is the collection of
isometries (also called distance-preserving functions) of the surface of the unit
ball in ordinary Euclidean three-dimensional space endowed with the same sorts
of basic operations. Groups have been construed as algebras of several different
similarity types. Most of the popular renditions of group theory define groups as
certain special kinds of semigroups. Our choice of fundamental operations was
motivated by the desire to have the class of groups turn out to be a variety. Still,
there are a number of quite satisfactory ways to present the intuitive notion of a
group. For instance, there is no real need to devote a basic operation to the unit
element. It is even possible to make do with a single binary operation, though
this cannot be ·. The sense in which such formulations are equivalent, not only
for groups but for algebras in general, is made precise in §4.12. Some interesting
aspects of semigroups and groups are explored in Chapter 3.

Rings

A ring is an algebra 〈A,+, ·,−,0〉 such that 〈A,+,−,0〉 is an Abelian group,
〈A, ·〉 is a semigroup, and

a · (b+ c) = (a ·b)+(a · c) for all a,b,c ∈ A

and
(b+ c) ·a = (b ·a)+(c ·a) for all a,b,c ∈ A.

A ring with unit is an algebra 〈A,+, ·,−,0,1〉 such that 〈A,+, ·,−,0〉 is a ring
and 〈A, ·,1〉 is a monoid. A familiar example of a ring (with unit) is the integers
endowed with the familiar operations. Another example is the set of n× n ma-
trices with real entries endowed with the obvious operations. We regard fields as
special kinds of rings.

Vector Spaces and Modules

In the familiar treatments, vector spaces and modules are equipped with a binary
operation called addition and a scalar multiplication subject to certain conditions.
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As ordinarily conceived, the scalar multiplication is not what we have called an
operation. An easy way around this trouble is to regard scalar multiplication
as a schema of unary operations, one for each scalar. Actually, this is in ac-
cord with geometric intuition by which these operations amount to stretching or
shrinkingly. Let

R = 〈R,+, ·,−,0,1〉

be a ring with unit. An R-module (sometimes called a left unitary R-module) is
an algebra 〈M,+,−,0, fr〉r∈R such that 〈M,+,−,0〉 is an Abelian group and for
all a,b ∈M and for all r,s, and t ∈ R the following equalities hold:

fr ( fs(a)) = ft(a) where r · s = t in R
fr(a+b) = fr(a)+ fr(b)

fr(a)+ fs(a) = ft(a) where r + s = t in R
f1(a) = a.

In essence, what these conditions say is that fr is an endomorphism of the
Abelian group 〈M,+,−,0〉 for each r ∈ R, that this collection of endomorphisms
is itself a ring with unit, and that mapping r 7→ fr is a homomorphism from R
onto this ring. Although we will soon formulate such notions as homomorphism
in our general setting, this last sentence is meaningful as it stands in the special
context of ring theory. part of the importance of modules lies in the fact that very
ring is, up to isomorphism, a ring of endomorphisms of some Abelian group.
This fact is analogous to the more familiar theorem of Cayley to the effect that
every group is isomorphic to a group of permutations of some set. In the event
that R is a field, we call the R-modules vector spaces over R.

Bilinear Algebras over a Field

Let F = 〈F,+, ·,−,0,1〉 be a field. An algebra A = 〈A,+, ·,−,0, fr〉r∈F is a
bilinear algebra over F if 〈A,+,−,0, fr〉r∈F is a vector space over F and for all
a,b,c ∈ A and all r ∈ F :

(a+b) · c = (a · c)+(b · c)
c · (a+b) = (c ·a)+(c ·b)

fr(a ·b) = ( fr(a)) ·b = a · fr(b).

If, in addition, (a · b) · c = a · (b · c) for all a,b,c ∈ A, then A is called an as-
sociative algebra over F. Thus an associative algebra over a field has both a
vector space reduct and a ring reduct. An example of an associative algebra can
be constructed from the linear transformations of any vector space into itself. A
concrete example of this kind is obtained by letting A be the set of all 2×2 ma-
trices over the field of real numbers and taking the natural matrix operations. Lie
algebras, Jordan algebras, and alternative algebras provide important examples
of non-associative bilinear algebras that have arisen in connection with physics
and analysis. A Lie algebra is a bilinear algebra that satisfies two further equal-
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ities:

a ·a = 0 for all a ∈ A

((a ·b) · c)+((b · c) ·a)+((c ·a) ·b) = 0 for all a,b,c ∈ A.

Suppose 〈A,+, ·,−,0, fr〉r∈F is an associative algebra over F. Define

a∗b = (a ·b)+(−(b ·a)) for all a,b ∈ A.

It is not difficult to verify that 〈A,+,∗,−,0, fr〉r∈F is a Lie algebra. A good
but brief introduction to bilinear algebras is available in [] [Jacobson 1985]. []
[Pierce 1982] offers an excellent account of associative algebras over fields. We
remark that a common usage of the word “algebra” in the mathematical literature
is to refer to those mathematical structures we have called “bilinear algebras over
fields.” The objects that we have called “algebras” are then referred to as “uni-
versal algebras” (although there is nothing especially universal about, say, the
three-element group, which is one of these objects) or as “Ω-algebras” (perhaps
because Ω is a kind of Greek abbreviation for “operation”).

The establishment of the theories of groups, rings, fields, vector spaces, mod-
ules, and various kinds of bilinear algebras over fields is a sterling accomplish-
ment of nineteenth-century mathematics. This line of mathematical research
can be said to have reached its maturity at the hands of such mathematicians
as Hilbert, Burnside, Frobenius, Wedderburn, Noether, van der Waerden, and
E. Artin by the 1930s. It has continued to grow in depth and beauty, being today
one of the most vigorous mathematical enterprises.

There is another important series of examples of algebras, different in char-
acter from those described above.

Semilattices

A semilattice is a semigroup 〈A,∧〉 with the properties

a∧b = b∧a for all a,b ∈ A

and
a∧a = a for all a ∈ A.

A typical example of a semilattice is formed by taking A to be the collection
of all subsets of an arbitrary set with the operation being intersection. Another
example is formed by taking A to be the compact convex sets on the Euclidean
plane and the operation to be the formation of the closed convex hull of the union
of two compact convex sets.

Lattices

A lattice is an algebra 〈A,∧,∨〉 such that both 〈A,∧〉 and 〈A,∨〉 are semilattices
and the following two equalities hold:

a∨ (a∧b) = a for all a,b ∈ A
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and
a∧ (a∨b) = a for all a,b ∈ A.

A typical example of a lattice is formed by taking A to be the collection of all
equivalence relations on an arbitrary set, ∧ to be intersection, and ∨ to be the
transitive closure of the union of two given equivalence relations. Another exam-
ple is formed by taking A to be the set of natural numbers, ∨ to be the formation
of the least common multiples, and ∧ to be the formation of greatest common
divisors. Lattices have a fundamental role to play in our work. Chapter 2 is de-
voted to the elements of lattice theory. The operation ∧ is referred to as meet,
and the operation ∨ is called join.

Boolean Algebras

A Boolean algebra is an algebra 〈A,∧,∨,− 〉 such that 〈A,∧,∨〉 is a lattice and
for all a,b,c ∈ A the following equalities hold:

a∧ (b∨ c) = (a∧b)∨ (a∧ c)
a∨ (b∧ c) = (a∨b)∧ (a∨ c)

(a∨b)− = a−∧b−

a−− = a

(a−∧a)∨b = b

(a−∨a)∧b = b.

Thus a Boolean algebra is a distributive lattice with a unary operation of com-
plementation (denoted here by −) adjoined. As an example, take A to be the
collection of all subsets of an arbitrary set X , let the join ∨ be union, the meet ∧
be intersection, and the complementation − be set complementation relative to
X . Another example is afforded by the clopen (simultaneously open and closed)
subsets of a topological space under the same operations as above.

Relation Algebras

A relation algebra is an algebra 〈A,∧,∨, ·,− ,∪ ,1′〉 such that 〈A,∧,∨,− 〉 is a
Boolean algebra, 〈A, ·,1′〉 is a monoid, and the following equalities hold for all
a,b,c ∈ A:

a · (b∨ c) = (a ·b)∨ (a · c)
(a ·b)∪ = b∪ ·a∪

(a∪)∪ = a

(1′)∪ = 1′

(a∨b)∪ = a∪∨b∪(
a∪ · (a ·b)−

)
∧b = a−∧a.

An example of a relation algebra can be formed by taking A to be the collection
of all binary relations on an arbitrary set X , giving A the Boolean operations by
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regarding A as the power set of X2, and defining the remaining operations so that

R ·S = {〈x,y〉 : 〈x,z〉 ∈ R and 〈z,y〉 ∈ S for some z ∈ X}
R∪ = {〈x,y〉 : 〈y,x〉 ∈ R}
1′ = {〈x,x〉 : x ∈ X} .

The relation algebra obtained in this way from the set X is sometimes denoted
by RelX . [] [Jónsson 1982] provides a thorough and very readable overview.
Relation algebras have a rich theory, indeed rich enough to offer a reasonable
algebraic context for the investigation of set theory. The essential idea for such
an investigation is to regard set theory as the theory of membership. Member-
ship is a binary relation. Adjoining an additional constant (nullary operation) e
to the type of relation algebras to stand for membership opens the possibility of
developing set theory by distinguishing e from other binary relations by means
of the algebraic apparatus of relation algebras. It turns out to be possible, for ex-
ample, to render the content of Zermelo-Fraenkel axioms for set theory entirely
as equations in this setting. The deep connections these algebras have with the
foundations of mathematics emerges in the monograph of [][Tarski and Givant
1987].

Our list of examples of algebras ends here, having merely touched on a small
section. Further kinds of algebras will be introduced from time to time to serve
as examples and counterexamples.

Exercises 1.2

1. Let A be a nonempty set and Q be a finitary operation on A. Prove that the
rank of Q is unique.

2. Let A be a nonempty set. Describe the operations on A of rank 0 and in
set-theoretic terms.

3. Construct a semigroup that cannot be expanded to a monoid.

4. Construct a semigroup that is not the multiplicative semigroup of any ring.

5. Prove that every ring can be embedded in a ring that can be expanded to a
ring with unit.

6. Let 〈A,+, ·,−,0, fr〉r∈R be an associative algebra over the field F and de-
fine

a∗b = (a ·b)+(−(b ·a)) for all a,b ∈ A.

Prove that 〈A,+,∗,−,0, fr〉r∈R is a Lie algebra.
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7. Let A be a set and denote by Eqv A the set of all equivalence relations on
A. For R,S ∈ Eqv A define

R∧S = R∩S

R∨S = R∪R◦S∪R◦S◦R∪R◦S◦R◦S∪·· ·

where ◦ stands for relational product (that is, a(R◦S)b means that there is
some c such that both aRc and cSb). Prove that 〈Eqv A,∧,∨〉 is a lattice.

1.2 Subalgebras, Homomorphisms, and Direct
Products

One of the hallmarks of algebraic practice is the prominent role played by re-
lationships holding among algebras. Some of the subtleties of complicated al-
gebras can be more readily understood if some tractable way can be found to
regard them as having been assembled from less complicated, more thoroughly
understood algebras. The chief tools we will use to assemble new algebras from
those already on hand are the formation of subalgebras, the formation of homo-
morphic images, and the formation of direct products. The reader is probably
familiar with these notions in the settings of groups, rings, and vector spaces.
They fit comfortably into our general setting.

Let F be an operation of rank r on the nonempty set A, and let X be a subset
of A. We say that X is closed with respect to F (also that F preserves X and
that X is invariant under F) if and only if

F (a0,a1, . . . ,ar−1) ∈ X for all a0,a1, . . . ,ar−1 ∈ X .

In the event that F is constant, this means that X is closed with respect to F if
and only if F ∈ X . Thus the empty set is closed with respect to every operation
on A of positive rank, but it is not closed with respect to any operation of rank 0.

Taking A to be the set of integers, we see that the set of odd integers is closed
with respect to multiplication but not with respect to addition.

DEFINITION 1.3. Let A be an algebra. A subset of the universe A of A, which
is closed with respect to each fundamental operation of A, is called a subuni-
verse of A. The algebra B is said to be a subalgebra of A if and only if A and
B are similar, the universe B of B is a subuniverse of A, and QB is the restriction
to B of QA, for each operation symbol Q of A. Sub A denotes the set of all
subuniverses of A.

The ring of integers is a subalgebra of the ring of complex numbers.
“B is an extension of A” means that A is a subalgebra of B; we render this

in symbols as A ⊆ B. This convenient abuse of symbols should not lead to
ambiguity–if nothing else, the boldface characters convey the algebraic intent.

our system of conventions exposes us, from time to time, to the minor an-
noyance of subuniverses that are not universes of subalgebras. We insisted that
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the universes of algebras be nonempty, but we had also insisted on empty sub-
universes (exactly when there are no operations of rank 0). By accepting this
incongruity we avoid the need to single out many special cases in the statements
of definitions and theorems.

The notation of subalgebra defined above occasionally conflicts, at least in
spirit, with common usage. Consider the case of fields. We have regarded fields
as rather special sorts of rings, but the possibility of putting the function that
sends each nonzero element to its multiplicative inverse on the same distin-
guished footing as the ring operations is certainly enticing. We have not taken
this step, since the function involved is only a partial operation, and the result-
ing mathematical system would not fall within our definition of an algebra. This
deviation from our definition may seem small–from many viewpoints it is–but
to widen the definition so as to allow partial operations would result in a havoc
of technical complications and substantially alter the character of the ensuing
mathematics. We have the option of declaring that 0−1 = 0 in order to force
the operation to be defined everywhere, but this invalidates many equalities one
ordinarily thinks of as holding in fields. For example,

x−1x = 1

would not hold when x = 0 unless the field has only one element. in any case,
fields generally have subalgebras that are not fields. The integers come form a
subalgebra of the field of complex numbers that is not a subfield. In connection
with the examples of algebras that concluded the previous section, the situation
is very pleasant: Every subalgebra of a group, a ring, a vector space, etc., is again
an algebra of the same sort.

Now consider similar algebras A and B and let Q be an operation symbol of
rank r. A function h from A into B is said to respect the interpretation of Q if
and only if

h
(

QA(a0, · · · ,ar−1)
)

= QB (h(a0), · · · ,h(ar−1))

for all a0, . . . ,ar−1 ∈ A.

DEFINITION 1.4. Let A and B be similar algebras. A function h from A into
B is called a homomorphism from A into B if and only if h respects the in-
terpretation of every operation symbol of A. hom(A,B) denotes the set of all
homomorphisms from A into B.

We distinguish several kinds of homomorphisms and employ notation for
them as follows. Let A and B be similar algebras. Each of

h : A→ B

A h→ B
h ∈ hom(A,B)

denotes that h is a homomorphism from A into B. By attaching a tail to the
arrow, we express the condition of one-to-oneness of h; by attaching a second



1.2 Subalgebras, Homomorphisms, and Direct Products 11

head to the arrow, we express the condition that h is onto B. Thus both

h : A � B

and
A

h
� B

denote that h is a one-to-one homomorphism from A into B. We call such ho-
momorphisms embeddings. Likewise, both

h : A � B

and
A

h
� B

denote that h is a homomorphism from A onto B, and in this case we say that B
is the homomorphic image of A under h. Further, each of

h : A �� B

A
h

�� B

and

A
h∼= B

denote that h is a one-to-one homomorphism from A onto B. We call such homo-
morphisms isomorphisms. A and B are said to be isomorphic, which we denote
by A ∼= B, iff there is an isomorphism from A onto B. A homomorphism from
A into A is called an endomorphism of A, and an isomorphism from A onto A
is called an automorphism of A. EndA and AutA denote, respectively, the set
of all endomorphisms of A and the set of all automorphisms of A. The identity
map 1A belongs to each of these sets; moreover, each of these sets is closed with
respect to composition of functions. In addition, each automorphism of A is an
invertible function and its inverse is also an automorphism. Thus 〈EndA,◦,1A〉 is
a monoid, which we shall designate by EndA, and 〈AutA,◦,−1 ,1A〉 is a group,
which we shall designate by AutA.
〈R+, ·〉 and 〈R,+〉 are isomorphic, where R is the set of real numbers and

R+ is the set of positive real numbers. Indeed, the natural logarithm function is
an isomorphism that illustrates this fact. fact.

An isomorphism is a one-to-one correspondence between the elements of two
algebras that respects the interpretation of each operation symbol. This means
that with regard to a host of properties, isomorphic algebras are indistinguishable
from each other. This applies to most of the properties with which we shall deal;
if they are true in a given algebra, then they are true for all isomorphic images of
that algebras a well. Such properties have been called “algebraic properties.”

On the other hand, algebras that are isomorphic can be quite different from
each other. For example, the set of all twice continuously differentiable real
valued functions of a real variable that are solutions to the differential equation

d2 f
dx2 + f = 0
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can be given the structure of a vector space over the field of real numbers. This
vector space is isomorphic to the two-dimensional space familiar from Euclidean
plane geometry. Roughly speaking, the distinction between these two isomor-
phic vector spaces can be traced to the “internal” structure of their elements: on
the one hand, functions, and on the other hand, geometric points. The notion that
functions can be regarded as points with a geometric character is a key insight,
not only for differential equations but also for functional analysis. Because the
internal structure of the elements of an algebra can be used to establish algebraic
properties, some of the most subtle and powerful theorems of algebra are those
that assert the existence of isomorphisms.

Isomorphism is an equivalence relation between algebras, and the equiva-
lence classes are called isomorphic types. Isomorphism is a finer equivalence
relation than similarity, in the sense that if two algebras are isomorphic, then they
are also similar. In fact, among equivalence relations holding between algebras,
isomorphism is probably the finest we will encounter; similarity is one of the
coarsest.

The formation of subalgebras and of homomorphic images seems to lead to
algebras that are no more complicated than those with which the constructions
started. By themselves, these constructions do not offer the means to form larger,
more elaborate algebras. The direct product construction allows us to construct
seemingly more elaborate and certainly larger algebras from systems of smaller
ones.

Let I be any set and let Ai be a set for each i ∈ I. The system A = 〈Ai : i ∈ I〉
is called a system of sets indexed by I. By a choice function for A we mean a
function f with domain I such that f (i) ∈ Ai for all i ∈ I. The direct product of
the system A is the set of all choice functions for A. The direct product of A can
be designated in any of the following ways:

∏A,∏
i∈I

Ai, or ∏
I

Ai.

Each set Ai for i ∈ I is called a factor of the direct product. For each i ∈ I, the ith
projection function, denoted by pi, is the function with domain ∏A such that
pi( f ) = f (i), for all f ∈∏A. Sometimes we refer to members of ∏A as I-tuples
from A, and we write fi in place of f (i). Observe that if Ai is empty for some
i ∈ I, then ∏A is empty. Also note that if I is empty, then ∏A has exactly one
element: the empty function. If Ai = B, for all i ∈ I, then ∏A is also denoted by
BI and referred to as a direct power of B. In the event that I = {0,1}, we use
A0×A1 to denote ∏A.

Now let |I be a set and let Ai be an algebra for each i ∈ I. Moreover, suppose
that Ai and A j are similar whenever i, j ∈ I. So 〈Ai : i ∈ I〉 is a system of similar
algebras indexed by I. We create the direct product of this system of algebras by
imposing operations on ∏A coordinatewise. This is the unique choice of opera-
tions on the product set for which each projection function is a homomorphism.

DEFINITION 1.5. Let A = 〈Ai : i ∈ I〉 be a system of similar algebras. The
direct product of 〈Ai : i ∈ I〉 is the algebra, denoted by ∏A, with the same
similarity type, with universe ∏A such that for each operation symbol Q and all
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f 0, f 1, . . . , f r−1 ∈∏A, where r is the rank of Q,(
Q∏A( f 0, f 1, · · · , f r−1)

)
i = QAi

(
f 0
i , f 1

i , · · · , f r−1
i
)

for all i ∈ I.

Here are some alternatives for denoting products:

∏
i∈I

Ai, or ∏
I

Ai.

If B = Ai for all i ∈ I, we write BI for the direct product and call it a direct
power of B. In case I = {0,1}, we write A0×A1 in place of ∏A.

Throughout this book we have frequent need to write expressions like

QA(a0,a1, · · · ,ar−1)

where Q is an operation symbol (or a more complicated expression) of the alge-
bra A of rank r and a0,a1, . . . ,ar−1 ∈ A. Very often the exact rank of Q is of little
significance and the expression above is needlessly complex. We replace it by

QA(ā)

where ā stands for the tuple of elements of A of the correct length.
The formation of homomorphic images, of subalgebras, and of direct prod-

ucts are principal tools we will use to manipulate algebras. Frequently, these
tools are used in conjunction with each other. For example, let R denote the ring
of real numbers and let I denote the unit interval. Then RI is the ring of all real-
valued functions on the unit interval. Going a step further, we can obtain the ring
of all continuous real-valued functions on the unit interval as a subalgebra of RI .

Let K be a class of similar algebras. We use the following notation:

H(K) is the class of all homomorphic images of members of K.

S(K) is the class of all isomorphic images of subalgebras of members of
K.

P(K) is the class of all isomorphic images of direct products of systems
of algebras belonging to K.

We say that K is closed under the formation of homomorphic images, under the
formation of subalgebras, and under the formation of direct products–provided,
respectively, that H(K) ⊆ K, S(K) ⊆ K, and P(K) ⊆ K. Observe that if K

is closed with respect to direct products, then K contains all the one-element
algebras of the similarity type, since, in particular, K must contain the direct
product of the empty system of algebras.

Let K be a class of similar algebras. We call K a variety if and only if K

is closed under the formation of homomorphic images, of subalgebras, and of
direct products (i.e., H(K) ⊆K, S(K) ⊆K, and P(K) ⊆K). All of the classes
described at the close of the last section are varieties. Varieties offer us a means
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to classify algebras (that is, to organize them into classes) that is compatible with
our chief means for manipulating algebras. The notion of a variety will become
one of the central themes of these volumes.

Exercises 1.6

1. Let A and B be algebras. Prove that

hom(A,B) = (SubB×A)∩{h : h is a function from A into B }.

2. Let A = 〈Ai : i ∈ I〉 be a system of similar algebras. Prove that pi is a
homomorphism from ∏A onto Ai for each i ∈ I.

3. Let A = 〈Ai : i∈ I〉 be a system of similar algebras and assume that B is an
algebra of the same type with B = ∏A. Prove that if pi is a homomorphism
from B onto Ai for each i ∈ I, then B = ∏A.

4. Let A = 〈Ai : i ∈ I〉 be a system of similar algebras. Let B be an algebra
of the same type and hi be a homomorphism from B into Ai for each i ∈ I.
Prove that there is a homomorphism g from B into ∏A such that hi = pi◦g
for each i ∈ I.

5. Prove that every semigroup is isomorphic to a semigroup of functions from
X into X , where the operation is composition of functions and X is some
set.

6. Prove that every ring is isomorphic to a ring of endomorphisms of some
Abelian group. [Hint: Let A be an Abelian group. The sum h of endomor-
phisms f and g of A is defined so that that

h(a) = f (a)+g(a) for all a ∈ A,

where + is the basic binary operation of A. The product of a pair of
endomorphisms is their composition.]

7. Describe all the three-element homomorphic images of 〈ω,+〉, where ω

is the set of natural numbers.

1.3 Generation of Subalgebras

Let a be an algebra and let X be an arbitrary subset of the universe A of A. X is
unlikely to be a subuniverse of A, since quite possibly there is a basic operation
that, when applied to certain elements of X , produces a value outside X . So
X may fail to be a subuniverse because it lacks certain elements. As a first
step toward extending X to a subuniverse, one might gather into a set Y all of
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those elements that result from applying the operations to the elements of X .
Then X ∪Y is no longer deficient in the way X was. The new elements from Y ,
however, may now be taken as arguments for the basic operations, and X∪Y may
not be closed under all these operations. But by repeating this process, perhaps
countably infinitely many times, X can be extended to a subuniverse of A. With
respect to the subset relation, this subuniverse will be the smallest subuniverse of
A that includes X , since only those elements required by the closure conditions
in the definition of subuniverse are introduced in the process. The subuniverse
obtained in this way must be included in every subuniverse of which X is a
subset. Thus it may be obtained as the intersection of all such subuniverses. The
finitary character of the fundamental operations of the algebra ensures that this
iterative process succeeds after only countably many steps.

THEOREM 1.7. Let A be an algebra and let S be any nonempty collection of
subuniverses of A. Then

⋂
S is a subuniverse of A.

Proof. Evidently
⋂

S is a subset of A. Let F be any basic operation of A and
suppose that r is the rank of F . To see that

⋂
S is closed under F , pick any

a0,a1, . . . ,ar−1 ∈
⋂

S. For all B ∈ S we know that a0,a1, . . . ,ar−1 ∈ B; but then
F(a0,a1, · · · ,ar−1)∈B, since B is a subuniverse. Therefore F(a0,a1, · · · ,ar−1)∈⋂

S and
⋂

S is closed under F . �

DEFINITION 1.8. Let A be an algebra and let X ⊆ A. The subuniverse of A
generated by X is the set

⋂
{B : X ⊆ B and B is a subuniverse of A}. SgA(X)

denotes the subuniverse of A generated by X .

Since X ⊆ A and A is a subuniverse of A, Theorem 1.7 justifies calling
SgA(X) a subuniverse of A.

Now we can formalize the discussion that opened this section.

THEOREM 1.9. Let A be an algebra and X ⊆ A. Define Xn by the following
recursion:

X0 = X

Xn+1 = Xn∪{F(ā) : F is a basic operation of A and ā is a tuple from Xn}.

Then SgA(X) =
⋃
{Xn : n ∈ ω}.

Proof. The proof consists of two claims.

CLAIM 1. SgA(X)⊆
⋃
{Xn : n ∈ ω}.

Since X ⊆
⋃
{Xn : n∈ω}, we need only show that

⋃
{Xn : n∈ω} is a subuni-

verse. Let F be a basic operation and let ā be a tuple from
⋂
{Xn : n ∈ ω}. Since

F has some finite rank and X0 ⊆ X1 ⊆ ·· · , we can easily see that ā is a tuple from
Xm for some large enough m. But then F(ā) ∈ Xm+1 ⊆

⋂
{Xn : n ∈ ω}. So this

latter set is a subuniverse, as desired.
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CLAIM 2.
⋃
{Xn : n ∈ ω} ⊆ SgA(X).

Since SgA(X) is the intersection of all subuniverses that include X , it suffices
to show that Xn ⊆ B for every subuniverse that includes X and for every natural
number n. This can be immediately accomplished by induction on n. �

COROLLARY 1.10. Let A be an algebra and X ⊆A. If a∈ SgA(X), then there
is a finite set Y such that Y ⊆ X and a ∈ SgA(Y ).

Proof. We will prove by induction on n that

If a ∈ Xn, then a ∈ SgA(Y ) for some finite Y ⊆ X . (?)

Initial step: n = 0. Take Y = {a}.
Inductive Step: n = m + 1, and we assume without loss of generality that

a = F(b̄) where F is a basic operation and b̄ is a tuple from Xm. Letting Y
be the union of the finite sets obtained by applying the inductive hypothesis to
each element of b̄, we see that b̄ is a tuple from SgA(Y ). Thus a ∈ SgA(Y ) as
desired. �

COROLLARY 1.11. Let A be an algebra and X ,Y ⊆ A. Then

i. X ⊆ SgA(X).

ii. SgA (SgA(X)
)

= SgA(X).

iii. If X ⊆ Y , then SgA(X)⊆ SgA(Y ).

iv. SgA(X) =
⋃
{SgA(Z) : Z ⊆ X and Z is finite}.

The properties of SgA, considered as a unary operation on the power set of
A, which have been gathered in this last corollary, are so frequently used that
usually no reference will be given. Subuniverses of the form SgA(Z), where Z is
finite, are said to be finitely generated. Part 4 of this corollary entails that the
universe of any algebra is the union of its finitely generated subuniverses.

The set-inclusion relation is a partial order on the collection of all subuni-
verses of A. This order induces lattice operations of join and meet on the collec-
tion of all subuniverses. Some of the fundamental facts concerning this order are
easily deduced. They have been gathered in the next corollary.

COROLLARY 1.12. Let A be any algebra, S be any nonempty collection of
subuniverses of A, and B be any subuniverse of A. Then

i. With respect to set-inclusion,
⋂

S is the largest subuniverse included in
each member of S.

ii. With respect to set-inclusion, SgA (
⋃

S) is the smallest subuniverse includ-
ing each member of S.
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iii. B is finitely generated if and only if whenever B⊆ SgA (
⋃

T ) for any set T
of subuniverses of A, then B⊆ SgA (

⋃
T ′) for some finite T ′ ⊆ T .

iv. Suppose that for all B,C ∈ S there is D ∈ S such that B∪C ⊆ D. Then
⋃

S
is a subuniverse of A.

Parts 1 and 2 describe, respectively, the meet and join in the lattice of subuni-
verses. In fact, they describe how to form meets and joins of arbitrary collections
of subuniverses rather than just the meets and joins of subuniverses two at a time.
The import of 3 is that the notion of finite generation, which on its face appears
to be something “internal” to a subuniverse, can be characterized in terms of the
order-theoretic properties of the set of all subuniverses. This last corollary can
be deduced from the preceding material with help of only the following fact:

The subuniverses of A are precisely those subsets X of A such that X =
SgA(X).

Suppose B and C are any two subuniverses of A. We define the join of B and C
(denoted B∨C) by

B∨C = SgA(B∪C)

and the meet of B and C (denoted B∧C) by

B∧C = B∩C.

It is not hard to prove, using the last corollary, that the collection of all of A
endowed with these two operations is a lattice. We call this lattice the lattice of
subuniverses of A and denote it by SubA.

Exercises 1.13

1. Prove that every subuniverse of 〈ω,+〉 is finitely generated, where ω is
the set {0,1,2, . . .} of natural numbers.

2. Supply proofs for Corollaries 1.11 and 1.12.

3. A collection C of sets is said to be directed iff for all B,D ∈ C there is
E ∈ C such that B ⊆ E and D ⊆ E. C is called a chain of sets provided
⊆ is a linear ordering of C. Let A be an algebra. Prove that the following
statements are equivalent:

i. B is a finitely generated subuniverse of A.

ii. If C is any nonempty directed collection of subuniverses of A and
B⊆

⋃
C, then there is D ∈C such that B⊆ D.

iii. If C is any nonempty chain of subuniverses of A and B ⊆
⋃

C, then
there is D ∈C such that B⊆ D.

iv. If C is any nonempty chain of subuniverses of A and B =
⋃

C, then
B ∈C.
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(HINT: It may help to prove first that every infinite set M is the union of a
chain of its subsets, each of which has cardinality less than the cardinality
|M| of M. Zorn’s Lemma or some other variant of the Axiom of Choice
would be useful at this point.)

4. An algebra A is called mono-unary if it has only one basic operation and
that operation is unary. Prove that any infinite mono-unary algebra has a
proper subalgebra.

1.4 Congruence Relations and Quotient Algebras

Unlike the formation of subalgebras, the formation of homomorphic images of
an algebra apparently involves external considerations. But there is a notion of
quotient algebra that captures all homomorphic images, at least up to isomor-
phism. The constructions using normal subgroups and ideals familiar from the
theories of groups and rings provide a clue as to how to proceed in the general
setting.

Let h be a homomorphism from A onto B. Define

θ =
{
〈a,a′〉 : a,a′ ∈ A and h(a) = h(a′)

}
.

So θ is a binary relation on the universe of A. It is convenient to write a θ a′

in place of 〈a,a′〉 ∈ θ . Now θ is easily seen to be an equivalence relation on A,
since h is a function with domain A. Because h is a homomorphism, θ has an
additional property called the substitution property for A:

Let F be any basic operation of A and let a0,b0,a1,b1, . . . ∈ A. If ai θ bi
for all i less than the rank of F , then F(a0,a1, · · ·) θ F(b0,b1 · · ·).

We call the relation θ just described the kernel of h and denote it by kerh.

DEFINITION 1.14. Let A be an algebra. By a congruence relation on A
we mean an equivalence relation on the universe of A that has the substitution
property for A. Con A denotes the set of all congruence relations on A.

The kernels of homomorphisms are always congruence relations.
Now congruence relations on A, being special kinds of equivalence relations,

induce partitions of A. Let θ be a congruence relation on the algebra A. We use
the following notation:

a/θ = {b : a θ b and b ∈ A} for all a ∈ A

A/θ = {a/θ : a ∈ A}.

For a ∈ A, the set a/θ is called the congruence class of a modulo θ . A/θ is the
partition of A into congruence classes modulo θ . There is a natural map g, called
the quotient map, from A onto A/θ defined by

g(a) = a/θ for all a ∈ A.
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Figure 1.1:

We can impose the basic operations on A/θ in such a way that the quotient
map becomes a homomorphism. Let F be a basic operation of A and let r be
its rank. We will define an operation Fθ on A/θ that will correspond to F . The
following condition is crucial if g is to be a homomorphism:

g(F(a0,a1, · · · ,ar−1)) = Fθ (g(a0),g(a1), · · · ,g(ar−1))

for all a0,a1, . . . ∈ A. This looks very much like an adequate definition of Fθ ,
except that the elements a0,a1, . . . seem to play a rather privileged role on the
left-hand side, whereas g(a0) = a0/θ , g(a1) = a1/θ , . . . of the right-hand side
are congruence classes that are represented, as it were, accidentally by a0,a1, . . ..
But the substitution property is exactly the statement that any other choice of
representatives would lead to the same value of either sided. Thus the equation
displayed above can be used as a definition of an operation on A/θ .

DEFINITION 1.15. Let A be an algebra and θ be a congruence relation on
A. The quotient algebra A/θ is the algebra similar to A with universe A/θ in
which QA

θ
is the interpretation of Q, for each operation symbol Q.

Since the congruence θ is obviously the kernel of the quotient map from A
onto A/θ , we conclude that the congruence relations on A are exactly the kernels
of the homomorphisms with domain A. This begs the question of the connection
between B and A/θ where θ = kerh and h : A � B. The answer is contained in
the next theorem, where we record the result of this discussion as well.

THEOREM 1.16 (THE HOMOMORPHISM THEOREM). Let A and B be
similar algebras, let h be a homomorphism from A onto B, and let θ be a con-
gruence relation on A and g be the quotient map from A onto A/θ . Then

i. The kernel of h is a congruence relation on A.

ii. The quotient map g : A � A/θ is a homomorphism from A onto A/θ .

iii. If θ = kerh, then the unique function f from A/θ onto B satisfying f ◦g = h
is an isomorphism from A/θ onto B.
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Proof. As the various definitions were virtually designed to make 1 and 2 true,
we will only look at 3. Since we want f ◦g = h and since g is the quotient map,
the only option is to define f by

f (a/θ) = h(a) for all a ∈ A.

To see that this definition is sound, suppose that a θ a′. Then h(a) = h(a′), since
θ = kerh. Thus f (a/θ) = h(a) = h(a′) = f (a′/θ), as desired. f is one-to-one,
since

f (a/θ) = f (a′/θ) implies h(a) = h(a′)

and, as kerh = θ , we have a/θ = a′/θ . Finally, to demonstrate that f is a
homomorphism, let Q be an operation symbol and ā be a tuple from A. Then

f
(

QA
θ (ā/θ)

)
= f

(
QA

θ (g(ā))
)

= f
(

g
(

QA(ā)
))

= h
(

QA(ā)
)

= QB (h(ā))

= QB ( f (g(ā)))

= QB ( f (ā/θ)) .

Thus, f is a homomorphism and hence an isomorphism from A/θ onto B. �

This theorem, specialized to groups and rings, becomes a familiar result. In
these settings, it is possible to go a step further and distinguish normal subgroups,
in the case of groups, and ideals, in the case of rings. These are, respectively,
the congruence classes containing the unit element of the group and the zero
element of the ring. For these kinds of algebras, it can be argued that these
special congruence classes determine the whole congruence relation. In fact,
for groups and all their expansions, any single congruence class determines the
whole congruence relation. This is a rather unusual property for an algebra to
have, as some of the examples below illustrate. This property and others like it
are examined in some detail in Volume 2.

EXAMPLE 1.17. 1. Let Z = 〈Z,+, ·,−,0,1〉 denote the ring (with unit) of
integers. For each integer q, define the equivalence relation ≡q on Z by

r ≡q s iff q is a factor of r− s.

It is easy to see that ≡0 is the identity relation whereas r ≡1 s holds for all
integers r and s. Since ≡−q is the same relation as ≡q, we ignore negative
q’s. In view of the distributive law, we conclude that ≡q is a congruence
relation on the ring of integers. Of all the ≡q’s, we see that ≡0 is the
smallest, that ≡1 is the largest, and that

≡q⊆≡t iff t is a factor of q.
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The ring Z/ ≡0 is isomorphic to Z and the ring Z/ ≡1 has only one ele-
ment. For q > 1, Z/≡q is the ring of “residues modulo q.” It is isomorphic
to the ring with universe {0,1, . . . ,q−1}where addition and multiplication
are defined modulo q; that is, the operation is performed as in Z, and then
the remainder modulo q is extracted to obtain the value in {0,1, . . . ,q−1}.
Now let θ be an arbitrary congruence relation on Z. We can show that θ is
≡q for some q. Consider the case when 0/θ = {0}. In this case we have

r θ s ⇐⇒ (r− s) θ (s− s) = 0
⇐⇒ (r− s) = 0
⇐⇒ r = s

and so θ is ≡0. In the case that 0/θ is properly larger than {0}, it is easy
to prove that 0/θ has a positive number; let q be the least positive number
of 0/θ . Let r,s ∈ Z and pick d, t ∈ Z so that

r− s = qd + t and t ∈ {0,1, . . . ,q−1}.

Then

r θ s ⇐⇒ (r− s) θ 0
⇐⇒ (qd + t) θ 0
⇐⇒ t θ 0(since q θ 0 implies qd θ 0)
⇐⇒ t = 0( since 0≤ t < q)
⇐⇒ q is a factor of r− s

⇐⇒ r ≡q s.

So the congruence relations on the ring of integers are exactly the relations
≡q where q is a non-negative integer. The homomorphic images of Z are,
up to isomorphism, Z itself, the one element ring, and the ring of residues
modulo integers greater than 1.

2. Let R = 〈R,∧,∨〉 where R is the set of real numbers and

r∧ s = min(r,s)
r∨ s = max(r,s)

R is a lattice. We wish to describe all the congruence relations on R. So let
θ be a congruence relation. Suppose r θ s and r≤ t ≤ s. Then r = (r∧ t) θ

(s∧ t) = t, and so r θ t. This means that the congruence classes of θ are
convex–that is, they are intervals, perhaps infinite or even degenerate. Pick
an arbitrary element from each congruence class. It is evident that the set
of selected elements forms a subalgebra of R isomorphic to R/θ .

Now let θ be any equivalence relation on R such that each θ -equivalence
class is a convex set of real numbers. To verify the substitution property,
let r θ r′ and s θ s′.
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CASE 0: r θ s.

The substitution property is immediate, since r∧ s, r∨ s, r′∧ s′, and r′∨ s′

all belong to {r,s,r′,s′} ⊆ r/θ .

CASE 1: r and s lie in different equivalence classes modulo θ .

The two θ -classes, which are intervals, cannot overlap. Thus, without
loss of generality, we assume that every element of r/θ is less than every
element of s/θ . Hence

r∧ s = r

r′∧ s′ = r′

r∨ s = s

r′∨ s′ = s′.

Therefore (r∧ s) θ (r′∧ s′) and (r∨ s) θ (r′∨ s′), as desired, and so θ is a
congruence relation.

Thus the congruence relations of R are exactly those equivalence rela-
tions whose equivalence classes are convex sets of real numbers. Since
any proper convex subset of R is a congruence class of infinitely many
congruence relations, R provides a strong contrast with the behavior of
congruence relations on groups.

For most algebras, the task of describing all the congruence relations is hope-
lessly difficult, so these two examples have a rather special character. The col-
lection of all congruence relations of an algebra is a rich source of information
about the algebra; discovering the properties of this collection often leads to a
deeper understanding of the algebra.

Just as the subuniverses of an algebra form a lattice, so do the congruence
relations. Roughly the same analysis can be used. Let A be an algebra and let
X be a binary relation on A. Now X may fail to be a congruence relation, either
because it is not an equivalence relation on A or because it does not have the
substitution property. In either case, the failure can be traced to the existence of
an ordered pair that fails to belong to X but that must belong to any congruence
relation that includes X . All such necessary ordered pairs can be gathered into
a set Y , and X ∪Y is at least not subject to the same deficiencies as X . Yet
X ∪Y may fail transitivity or the substitution property. But by repeating the
process, perhaps countably infinitely often, a congruence relation will be built;
with respect to set inclusion, it will be the smallest congruence relation on A that
includes X .

THEOREM 1.18. Let A be an algebra and C be any nonempty collection of
congruence relations on A. Then

⋂
C is a congruence relation on A.

The routine proof of this theorem is left as an exercise. This theorem allows
us to proceed as we did with subuniverses.
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DEFINITION 1.19. Let A be an algebra and let X ⊆ A×A. The congruence
relation on A generated by X is the set⋂

{θ : X ⊆ θ and θ is a congruence relation on A}.

CgA(X) denotes the congruence relation on A generated by X .

As we did with subuniverses, we can formalize the discussion above to obtain
a description of how to extend a binary relation to obtain the congruence relation
it generates. This is complicated by the necessity of arriving at an equivalence
relation. For the purposes of convenience in dealing with congruences, both here
and in general, we introduce some notation. Let A be an algebra and θ be a
binary relation on A. Let ā and ā′ be tuples from A of the same length, say r. So

ā = 〈a0,a1, . . . ,ar−1〉 and ā′ = 〈a′0,a′1, . . . ,a′r−1〉.

We use
ā θ ā′

in place of the more elaborate

a0 θ a′0
a1 θ a′1

...
ar−1 θ a′r−1.

Thus ā θ ā′ stands for “ai θ a′i for all i < r.” Using this notation, we can rephrase
the substitution property as:

ā θ ā′ implies F(ā) θ F(ā′), for all basic operations F and all tuples ā and
ā′.

THEOREM 1.20. Let A be an algebra and X ⊆ A×A. Define Xn by the follow-
ing recursion:

X0 = X ∪
{
〈a,a′〉 : 〈a′,a〉 ∈ X

}
∪{〈a,a〉 : a ∈ A}

Xn+1 = Xn∪Tn∪Qn,

where Qn = {〈F(ā),F(ā′)〉 : F is a basic operation and ā and ā′ are tuples such
that ā Xn ā′} and Tn = {〈a,c〉 : a Xn b Xn c for some b ∈ A}.

Then CgA(X) =
⋃

n∈ω

Xn.

The proof of this theorem is much like the proof of Theorem 1.9, the only
new element being an easy argument about transitive closures.

COROLLARY 1.21. Let A be an algebra and X ⊆ A×A. If 〈a,a′〉 ∈ CgA(X),
then there is a finite set Y ⊆ X such that 〈a,a′〉 ∈ CgA(Y ).
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COROLLARY 1.22. Let A be an algebra and X ,Y ∈ A×A. Then

i. X ⊆ CgA(X).

ii. CgA (CgA(X)
)

= CgA(X).

iii. If X ⊆ Y , then CgA(X)⊆ CgA(Y ).

iv. CgA(X) =
⋃
{CgA(Z) : Z ⊆ X and Z is finite}.

Congruence relations of the form CgA(Z), where Z is finite, are said to be
finitely generated. Those of the form CgA ({〈a,a′〉}) are called principal con-
gruence relations. This last piece of notation is obviously awkward. We replace
it by CgA(a,a′). Evidentally, CgA(a,a′) is the smallest congruence relation that
places a and a′ in the same congruence class–or, as we shall say more sugges-
tively, CgA(a,a′) is the smallest congruence collapsing 〈a,a′〉.

COROLLARY 1.23. Let A be an algebra, C be a nonempty collection of con-
gruence relations on A, and θ be any congruence relation on A. Then

i. With respect to set-inclusion,
⋂

C is the largest congruence relation on A
included in each member of C.

ii. With respect to set-inclusion, CgA (
⋃

C) is the smallest congruence rela-
tion including each member of C.

iii. θ is finitely generated if and only if whenever D is a set of congruences on
A and θ ⊆ CgA (

⋃
D), then θ ⊆ CgA (

⋃
D′) for some finite D′ ⊆ D.

iv. Suppose that for each φ ,ψ ∈C there is η ∈C such that φ ∪ψ ⊆ η . Then⋃
C is a congruence relation on A.

The proofs of these three corollaries do not differ significantly from the
proofs of the three corollaries to Theorem 1.9.

Suppose φ and ψ are congruence relations on the algebra A. We can define
the join (designated by ∨) and the meet (designated by ∧) of φ and ψ so that
φ ∨ψ = CgA(φ ∪ψ) and φ ∧ψ = φ ∩ψ . With these operations, the collection
of all congruence relations on A becomes a lattice, which we shall call the con-
gruence lattice of A and denote by Con A. Every congruence relation of A is
an equivalence relation on A and, as we saw in Exercise 1.2(7), the equivalence
relations on A constitute a lattice EqvA. In fact, Con A is a sublattice of EqvA.
The meet operation in both Con A and EqvA is just set-theoretic intersection.
To establish the contention that Con A is a sublattice of EqvA, it is necessary
to prove that the join operation in Con A is the restriction of the join operation
in EqvA. This is the import of the next theorem, and it even applies to joins
of arbitrary subsets of Con A. Note that we write Con A for the set of all con-
gruence relations on A–the universe of the lattice Con A. By the same token,
we write Sub A for the set of all subuniverses of A, and EqvA for the set of all
equivalence relations over the set A.
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THEOREM 1.24. Let A be an algebra and let C ⊆ Con A.

i. Con A = (Sub A×A)∩Eqv A.

ii. CgA (
⋃

C) =
⋂
{R :

⋃
C ⊆ R and R ∈ Eqv A} .

Proof. i. This is just a restatement of the definition of a congruence relation,
using the language of subuniverses and direct products.

ii. Let θ =
⋂
{R :

⋃
C ⊆ R and R ∈ Eqv A}. Thus θ is the smallest equiva-

lence relation on A that includes
⋃

C. Since it is clear that
⋃

C ⊆ θ ⊆
CgA (

⋃
C), we need only establish that θ is a congruence on A. In view

of part 1 of the theorem, it remains to establish that θ is a subuniverse of
A×A.

The transitive closure of relations was described in the Preliminaries. A
more detailed analysis is used here. Let D be any collection of relations
on A–that is, subsets of A×A. Let D∗ denote the set of all those relations
that can be obtained as compositions (i.e., relational products) of finite
nonempty sequences of relations belonging to D. Thus φ0 ◦φ1 ◦ · · · ◦φn−1,
where φi ∈ D for each i < n is a typical element of D∗. Checking that⋃

D∗ is actually the transitive closure of
⋃

D presents no difficulties. This
analysis of the transitive closure leads immediately to the following con-
clusion: If D consists entirely of symmetric reflexive relations on A, then
the transitive closure

⋃
D is also symmetric and reflexive and is, there-

fore, the smallest equivalence relation including
⋃

D. In particular, θ is
the transitive closure

⋃
C∗ of

⋃
C.

Now consider any two subuniverses φ and ψ of A×A. φ ◦ψ must be a
subuniverse of A×A as well, since if F is any basic operation of A and n
is the rank of F and if aiφbiψci for all i < n, then

F (a0,a1, · · · ,an−1)φF (b0,b1, · · · ,bn−1)ψF (c0,c1, · · · ,cn−1) .

By the obvious inductive extension of this fact, if D consists entirely of
subuniverses of A×A, then so does D∗. Moreover, if every member
of D is reflexive, then D∗ is directed upward by set-inclusion (see Exer-
cise 1.13(3)). In particular, this means that C∗ is a collection of subuni-
verses of A×A and that for any φ and ψ in C∗ there is η in C∗ such that
φ ∪ψ ⊆ η . Hence, by Corollary 1.12 (4),

⋃
C∗ is a subuniverse of A×A.

That is, θ is a subuniverse of A×A, as desired.
�

Let A be any algebra. With A we can associate four other algebras: EndA,
which is the monoid of all endomorphisms of A; SubA, which is the lattice of
all subuniverses of A; and Con A, which is the lattice of all congruence relations
on A. Chapter 2 is devoted to the rudiments of the abstract theory of lattices, and
Chapter 3 takes up some aspects of the theories of monoids and of groups. These
four algebras related to A contain significant information about A.

Exercises 1.25
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1. Let h ∈ hom(A,B). Prove that kerh is a congruence relation on A.

2. Let θ ∈ Con A. Prove that the quotient map from A onto A/θ is a homo-
morphism from A onto A/θ and that its kernel is θ .

3. Let G be a group, θ ∈ Con G, and N be a normal subgroup of G. Prove
that e/θ is a normal subgroup of G, where e is the unit of the group. Prove
that

{
〈a,b〉 : a ·b−1 ∈ N

}
is a congruence relation on G. Finally, prove

that if φ ∈ Con G, then φ = θ iff e/φ = e/θ .

4. Verify that ≡q is a congruence relation on the ring Z of integers for every
natural number q.

5. Suppose θ ∈ Con A. Prove that θ =
⋃{

CgA(a,a′) : a θ a′
}

. Is every
subuniverse the join of 1-generated subuniverses?

6. Let A be an algebra and h ∈ hom(A,A). Prove that h is one-to-one iff
kerh = 0A, where 0A dentoes the least congruence relation on A, namely
the identity relation {〈a,a〉 : a ∈ A}.

7. Let A be an algebra. Define F to be the function with domain EndA such
that

F(h) = h−1 ◦h for all h ∈ EndA.

Prove that F maps EndA into Con A.

*8. (Burris and Kwatinetz) Let A be an algebra that is countable (i.e., finite or
countably infinite) and has only countably many basic operations. Prove
each of the following:

i. |AutA| ≤ ω or |AutA|= 2ω

ii. |SubA| ≤ ω or |SubA|= 2ω

iii. |EndA| ≤ ω or |EndA|= 2ω

iv. |Con A| ≤ ω or |Con A|= 2ω

where ω is the cardinality of the set of natural numbers and 2ω is the
cardinality of the set of real numbers.
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Lattices

2.1 Fundamental Concepts

Lattices arise often in algebraic investigations. We have already seen that SubA
and Con A are lattices for every algebra A. Knowing the significance of normal
subgroups in group theory and ideals in ring theory, we should not be surprised
that lattices of congruences have an important role to play. By itself, this would
justify a detailed development of lattice theory. It turns out that, in addition
to congruence lattices, many other lattices prove useful in developing a general
theory of algebras.

This chapter is an introduction to lattice theory, focusing on the results that
will be put to use in this volume. §§ 4.6 and 4.8 further elaborate some aspects
of lattice theory introduced here. Lattice theory is a rich subject in its own right.
We can highly recommend [Birkhoff 1967], [Crawley and Dilworth 1973], and
[Grätzer 1978] for fuller expositions of lattice theory.

Lattices were defined in Chapter 1 as algebras of the form 〈L,∧,∨〉, with two
binary operations called meet (designated by ∧) and join (designated by join),
for which the following equalities hold true for all a,b,c ∈ L:

a∧b = b∧a a∨b = b∨a
a∧ (b∧ c) = (a∧b)∧ c a∨ (b∨ c) = (a∨b)∨ c

a∧a = a a∨a = a
a∧ (a∨b) = a a∨ (a∧b) = a

The equalities on the first line express commutativity, those on the second line
associativity, those on the third line idempotency, and those on the last line ab-
sorption. These equalities are called the axioms of lattice theory. An alternative
system of notation in common use denotes join by “+” and meet by “·′′ (or sim-
ply by juxtaposition).

Lattices can also be viewed as special ordered sets. Let L be a nonempty set
and ≤ be a binary relation on L. The relation ≤ is said to be an order on A if
and only if for all a,b,c ∈ L

27
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i. (Reflexivity) a≤ a;

ii. (Anti-symmetry) If a≤ b and b≤ a, then a = b;

iii. (Transitivity) If a≤ b and b≤ c, then a≤ c.

Orders have frequently been referred to as partial orders in the literature. Let ≤
be an order on L and let X ⊆ L. An element a ∈ L is called an upper (lower)
bound of X if and only if x ≤ a (a ≤ x) for all x ∈ X ; a is called a least upper
bound of X if and only if a is an upper bound of X and a≤ b for all upper bounds
b of X . Dually, a is called a greatest lower bound of X if and only if a is a lower
bound of X and b ≤ a for all lower bounds b of X . Since ≤ is anti-symmetric,
least upper bounds and greatest lower bounds are unique, when they exist. The
least upper bound of X is called the supremum of X and is denoted by supX ;
the greatest lower bound of X is also called the infimum of X and is denoted by
infX .

DEFINITION 2.1. Let L be a nonempty set. A lattice order on L is an order
on L with respect to which every subset of L with exactly two elements has both
a least upper bound and a greatest lower bound. The relational structure 〈L,≤〉
is called a lattice ordered set if ≤ is a lattice order on L.

Each lattice has an underlying lattice order, from which the lattice operations
of join and meet can be recovered. More precisely, let L be the lattice 〈L,∧,∨〉
and define Lo to be 〈L,≤〉 where ≤ is the binary relation on L specified, for all
a,b ∈ L, by

a≤ b if and only if a = a∧b.

Routine calculations reveal that ≤ is a lattice order on L. Now suppose L is
some lattice ordered set 〈L,≤〉 and define La to be 〈L,∧,∨〉where the two binary
operations are specified, for all a,b ∈ A, by

a∧b = inf{a,b}
a∨b = sup{a,b}.

Again, routine calculations reveal that La is, indeed, a lattice. Moreover, Loa = L
for every lattice L and Lao = L for every lattice ordered set L.

It is useful to gain some skill at manipulating lattice equations and inclu-
sions. Some of the most frequently used manipulations come up in the following
exercises.

Exercises 2.2

1. Let L be a lattice. Prove that for all a,b ∈ L, a = a∧ b if and only if
b = a∨b.

2. Verify the claims made above.

i. If L is a lattice, then Lo is a lattice ordered set.
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ii. If L is a lattice ordered set, then La is a lattice.

iii. If L is a lattice, then Loa = L.

iv. If L is a lattice ordered set, then Lao = L.

3. Let L be a lattice and let a,b,c,d ∈ L. Prove that if a≤ b and c≤ d, then
a∧ c≤ b∧d and a∨ c≤ b∨d.

4. Let L be a lattice and let a,b,c ∈ L. Prove that

i. a≤ c and b≤ c if and only if a∨b≤ c.

ii. c≤ a and c≤ b if and only if c≤ a∧b.

iii. a∧b≤ a∨b.

5. Prove that the two axioms of lattice theory that express idempotency are
derivable from the other six axioms.

6. Let L be a lattice and let a,b,c ∈ L. Prove that

i. (a∧b)∨ (a∧ c)≤ a∧ (b∨ c).

ii. a∨ (b∧ c)≤ (a∨b)∧ (a∨ c).

iii. (a∧b)∨ (b∧ c)∨ (c∧a)≤ (a∨b)∧ (b∨ c)∧ (c∨a).

iv. (a∧b)∨ (a∧ c)≤ a∧ (b∨ (a∧ c)).

7. Let L = 〈L,∧,∨〉 be a lattice. Prove that 〈L,∧,∗〉 is a lattice if and only if
a∗b = a∨b for all a,b ∈ L.

Let L be a lattice, or more generally, an ordered set. For a,b ∈ L, we say that
b covers a (and that b is an upper cover of a and that a is a lower cover of b),
and we write a≺ b if and only if a < b and {c : a < c < b,c ∈ L} is empty. L is
said to be bounded provided L has both a greatest element and a least element.
We use 1 to denote the greatest element of L and 0 to denote the least element of
L, whenever they exist. If L has a least element 0, then the upper covers of 0 are
called the atoms of L. Dually, if L has a greatest element 1, then the lower covers
of 1 are called the coatoms of L. Elements a,b ∈ L are said to be comparable
if a ≤ b or b ≤ a; a ‖ b denotes that a and b are incomparable. A subset of L
in which any two elements are comparable is called a chain, whereas a subset in
which no two elements are comparable is called an antichain. I[a,b] denotes the
interval from a to b–that is, the set {c : c ∈ L and a ≤ c ≤ b}. We also use I(a]
to denote {c : c ∈ L and c≤ a} and I[a) to denote {c : c ∈ L and a≤ c}.

By using the covering relation, it is possible to draw diagrams of finite lattices
and of certain infinite lattices. The practical usefulness of these diagrams is great,
and the reader is encouraged to draw lattice diagrams whenever that may seem
helpful. A Hasse diagramHasse, H. of the lattice L is obtained by arranging
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the elements of L as points on a plane in such a way that if a < b, then the
point representing b is above the point representing a. lattice diagram|seeHasse
diagram of a lattice Hasse diagram of a lattice lattice(s)!Hasse diagrams of Then
a line segment is drawn between any two points that constitute a covering in L.
For those lattices for which the lattice ordering is the transitive closure of the
covering relation (this includes all finite lattices), a Hasse diagram completely
determines the lattice. The ability to draw revealing Hasse diagrams of lattices
and other ordered sets is an acquired skill. A lattice does not have to be very large
before many strikingly different ways of drawing its Hasse diagrams becomes
available. Generally speaking, a diagram is most useful when it is spread out
and reduces line crossings to a minimum. Figure 2.1 consists of just a few of
the lattice diagrams we will use at various places in these volumes. One of the
most elaborate lattice diagrams in this work is given in the second volume, where
the bulk of two sections is essentially devoted to providing instructions for the
drawing of the diagram.
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C2 C3

M2 M3 M4 M3,3

N5

N6

N7

FD(3)

FM(3)

Figure 2.1:
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Some caution needs to be exercised with Hasse diagrams. Figure 2.2 is a
diagram that looks very much like a lattice diagram but is not:

Figure 2.2:

It is apparent that when a lattice diagram is turned upside down, another
lattice diagram is obtained. Considering the definitions, we see that ≤ becomes
≥ and that ∧ and ∨ have been interchanged. Of course, this is a consequence of
the obvious symmetry of the axioms of lattice theory. More formally, we have
the principle of duality for lattices:

If 〈L,∧,∨〉 is a lattice, then 〈L,∨,∧〉 is a lattice.

If 〈L,≤〉 is a lattice ordered set, then 〈L,≥〉 is a lattice ordered set.

As a consequence, if σ is a statement that is true in every lattice and σ ′ is a
statement obtained from σ by interchanging ≤ and ≥ and interchanging ∧ and
∨, then σ ′ is true in every lattice.

If L = 〈L,∧,∨〉 is a lattice, then L∂ is the lattice 〈L,∨,∧〉 and it is called the
dual of L. Similar notation applies to lattice ordered sets.

Now let L = 〈L,≤〉 and L′ = 〈L′,≥′〉 be two lattice ordered sets. A function
f from L into L′ is said to be isotone or order preserving if and only if, for all
a,b∈ L, a≤ b implies f (a)≤′ f (b). It is easy to check that every homomorphism
between two lattices is isotone. But not every isotone map is a homomorphism,
as Figure 2.3 reveals.

On the other hand, if h is a one-to-one isotone map from L onto L′, and h−1

is also isotone, then h is an isomorphism from the lattice L onto the lattice L′.
It is also important to realize that while ≤ may be a lattice order on L and

L′ may be a subset of L on which ≤ induces a lattice order, it can happen that
L′ is not a subuniverse of the lattice 〈L,∧,∨〉. This phenomenon can be traced
to the global nature of the definition of join and meet in terms of the ordering.
Figure 2.4 is an example. L′ consists of the points denoted by ∗.

Exercises 2.3
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Figure 2.3:

∗

∗∗

∗

Figure 2.4:

1. Draw a Hasse diagram for the lattice of all subgroups of the symmetric
group on {0,1,2}.

2. Draw the Hasse diagram of the lattice of all subsets of the set {0,1,2,3}.

3. Prove that every isotone one-to-one function from a lattice L onto a lattice
L′ that preserves incomparability is an isomorphism. Provide an example
to show that an isotone one-to-one function from a lattice L into a lattice
L′ need not be a homomorphism.

In the study of lattices, it is helpful to single out individual elements of lat-
tices that have special properties with respect to the ordering of the basic opera-
tions.

DEFINITION 2.4. Let L be a lattice and a ∈ L. a is join irreducible iff a =
b∨c always implies a = b or a = c. join!irreducible element join!irreducible ele-
ment!strictly Dually, a is said to be meet irreducible iff a = b∧c always implies
a = b or a = c. meet!irreducible element meet!irreducible element!strictly J(L)
denotes the set of all join irreducible members of L and M(L) denotes the set of
all meet irreducible elements of L. a is said to be join primejoin!prime element
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iff a≤ b∨c always implies a≤ b or a≤ c. Dually, a is meet primemeet!irreducible
prime iff a≥ b∧ c always implies a≥ b or a≥ c.

In the lattice N5 (see Figure 2.1), every element is either join prime or meet
prime. In M3 only 1 is meet prime and only 0 is join prime, but every ele-
ment is either join irreducible or meet irreducible. These four properties of an
element are preserved in passing to a sublattice that contains the element. Ev-
ery join prime element is join irreducible and every meet prime element is meet
irreducible.

THEOREM 2.5. Let L be a finite lattice. The following conditions are equiva-
lent:

i. The two-element lattice is a homomorphic image of L.

ii. L has a join prime element different from 0.

iii. L has a meet prime element different from 1.

Proof. Since (i) is a selfdual property and (ii) is the dual of (iii), we need only
show that (i) and (ii) are equivalent. Let C2 be the two-element lattice with
C2 = {0,1} and 0 < 1. Suppose that (i) holds and that h : L � C2. Let h−1(1) =
{a0,a1, . . . ,an)} and set

a = a0∧a1∧·· ·∧an.

So h(a) = h(a0)∧ h(a1)∧ ·· · ∧ h(an) = 1. To see that a is join prime, suppose
a ≤ b∨ c. Then h(a) ≤ h(b)∨ h(c) and so 1 = h(b)∨ h(c). Since h(b),h(c) ∈
{0,1}, we see that either h(b) = 1 or h(c) = 1. Thus either a≤ b or a≤ c, and a
is join prime. a 6= 0, since h is onto C2.

For the converse, suppose that a is a nonzero join prime element of L. Define
h : L � C2 by: h(u) = 1 iff a ≤ u. Then, since a is join prime, h−1(0) is closed
under join. It is clear that h−1(1) is closed under meet. Moreover, if h(u) = 0
and h(v) = 1, then a≤ u∨v and a 6≤ u∧v, so h(u∨v) = 1 and h(u∧v) = 0. Thus
h is a homomorphism from L onto C2, as desired. �

The condition in the previous theorem that L be finite cannot be omitted. In
the demonstration that (i)⇒ (ii), it played a crucial role. The condition can be
weakened. The ascending chain condition holds for the lattice L provided L
has no sublattice isomorphic to the lattice of natural numbers under their usual
ordering–that is, provided that every ascending chain in L is finite. The dual
property is referred to as the descending chain condition. These conditions
have been applied to the ideal lattices of rings.

THEOREM 2.6. The following conditions are equivalent for any lattice L.

i. Every nonempty subset of L has a maximal element.

ii. L satisfies the ascending chain condition.

Dually, the following conditions are equivalent for any lattice L.
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i’. Every nonempty subset of L has a minimal element.

ii’. L satisfies the descending chain condition.

Proof. In view of the duality, we need only prove that (i’) is equivalent to (ii’).
(i’)⇒ (ii’) To argue the contrapositive, just notice that any sublattice of L

ordered like the negative numbers has no smallest element.
(ii’)⇒ (i’) Again, we argue the contrapositive. Let X be a nonempty subset

of L without minimal elements. According to the Axiom of Choice, there is a
choice function F for the collection of nonempty subsets of X (i.e., F(Y ) ∈Y for
every nonempty Y ⊆X). Since X has no minimal elements, {x : x∈X , and x < z}
is nonempty, for all z ∈ X . This allows us to define a function g from the set of
natural numbers into X by the following recursion:

g(0) = F(X)
g(n+1) = F ({x : x ∈ X and x < g(n)}) for all natural numbers n.

Evidentally, {g(n) : n is a natural number} is a subset of L ordered like the neg-
ative integers. �

The theorem above, which is actually very straightforward, nevertheless in-
vokes the Axiom of Choice. One more or less immediate consequence of this
theorem is that the descending chain condition is sufficient for the representation
of elements of a lattice as joins of finitely many join irreducible elements.

THEOREM 2.7. If L is a lattice with the ascending chain condition, then every
element of L is a meet of finitely many meet irreducible elements; dually, if L is
a lattice with the descending chain condition, then every element of L is a join of
finitely many join irreducible elements.

Proof. Suppose that L has the descending chain condition. Let X be the set of all
elements of L that cannot be written as the join of finitely many join irreducible
elements. If X is nonempty, then it would have a minimal element x. In this case,
x cannot be join irreducible, so there are elements y and z, each properly less than
x, such that x = y∨ z. Since y and z are both properly less than x, they are not in
X . Consequently, y and z can be expressed as joins of join irreducible elements.
Thus x can be expressed in the same way. But this means that x cannot belong to
X . Thus the supposition that X is nonempty is not tenable. So every element of
L can be expressed as the join of join irreducible elements. �

This theorem resembles the familiar theorem of arithmetic that every natural
number can be written as the product of prime numbers. Here, multiplication is
replaced by join and primeness replaced by join irreducibility. Actually, the con-
nection is closer than it appears at first. The set of natural numbers, endowed with
the operations of forming greatest common divisors and least common multiples,
is a lattice with the descending chain condition. The join irreducible elements
in this lattice are the powers of prime numbers. Of course, a powerful aspect of



36 Chapter 2 Lattices

factorization of numbers into primes is the uniqueness of the factorization. For
lattices in general, there may be elements that can be expressed as the join of
join irreducible elements in many different ways. Later in this chapter, we will
return to this topic and demonstrate that uniqueness can be obtained for some
interesting classes of lattices.

Exercises 2.8

1. Construct a lattice that has the two-element lattice as a homomorphic im-
age but has no join prime elements.

2. Prove that a lattice with the ascending chain condition has a meet prime el-
ement different from 1 iff it has the two-element lattice as a homomorphic
image.

3. Construct a finite lattice that has an element that can always be expressed
as the join of join irreducible elements in two distinct ways.

4. Prove that if L satisfies the ascending chain condition, then every chain in
L has a largest element.

2.2 Complete Lattices and Closure Systems

The lattices that prove most significant in the development of the general theo-
rem of algebras are congruence lattices, lattices of clones, subuniverse lattices,
lattices of equational theories (and their duals, the lattices of varieties), and inter-
pretability lattices. We have already introduced congruence lattices and subuni-
verse lattices; the reader will meet the other lattices later in this work. All these
lattices have important properties in common that do not hold for all lattices.

A lattice L is said to be complete if and only if every subset of L has both a
least upper bound and a greatest lower bound.

A complete lattice L always has a largest element, usually designated by 1,
which is the least upper bound of L, and a smallest element, usually designated
by 0, which is the greatest lower bound of L. If L is a complete lattice and X ⊆ L,
we use

∧
X to denote the greatest lower bound of X and

∨
X to denote the least

upper bound of X . (Thus, in the notation introduced just prior to Definition 2.1,
supX =

∨
X and infX =

∧
X .) If X = {xi : i ∈ I} we also write∧

I

xi for
∧

X and
∨
I

xi for
∨

X .

Theorem 1.7 and Theorem 1.18 have corollaries that assert that SubA and Con A
are complete lattices, for every algebra A. These two conclusions were estab-
lished virtually in the same manner, which we now formalize.

DEFINITION 2.9. F is a closed set system on the set A if and only if
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i. F is a collection of subsets of A,

ii. A ∈ F , and

iii.
⋂

G ∈ F for every nonempty G⊆ F .

The collection of all subuniverses of an algebra, the collection of all con-
gruence relations of an algebra, the collection of all equivalence relations on a
set, and the set of all closed subsets of a topological space are all examples of a
closed set system.

DEFINITION 2.10. Let A be a set. C is a closure operator on A if and only if
C is the function from the power set of A into the power set of A such that

i. X ⊆C(X) for all X ⊆ A,

ii. C (C(X)) = C(X) for all X ⊆ A, and

iii. If X ⊆ Y ⊆ A, then C(X)⊆C(Y ).

SgA and CgA, for any algebra A, are examples of closure operators, as the
familiar operations of forming topological closure and of forming the closed
convex hull in a topological vector space.

The connection between closed set systems and closure operators is much
like the connection between lattice orderings and lattices, discussed in the previ-
ous section. Given a closed set system on A, one may define a closure operator
on A; given a closure operator on A, one may define a closed set system on A.
Moreover, these two processes are inverses of each other. More precisely, let F
be a closed set system on A. Define the function C on the power set of A by

C(X) =
⋂
{K : X ⊆ K and K ∈ F}

for all X ⊆A. C turns out to be a closure operator on A. For the reverse definition,
let C be any closure operator on A. Define

F = {C(X) : X ⊆ A}.

In the next set of exercises, the reader is asked to check that F is a closed set
system on A and that the two procedures just described reverse each other. The
distinction between closed set systems and closure operators is only one view-
point, not essence.

THEOREM 2.11. Let C be a closure operator on the set A and let F be its
closed set system. Then set-inclusion on F is a lattice ordering with respect to
which F becomes a complete lattice, with the lattice operations defined so that
for all G⊆ F, ∧

G = A, if G is empty,∧
G =

⋂
G, if G is not empty, and∨

G = C
(⋃

G
)
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Proof. Evidentally,
∧

G is the greatest lower bound of G, with respect to the
set-inclusion relation.∨

G is an upper bound of G, since if K ∈G, then K ⊆
⋃

G and
⋃

G⊆C (
⋃

G),
since C is a closure operator. Now suppose that H is a closed set such that K ⊆H
for all K ∈ G. Then

⋃
G ⊆ H. This implies that C (

⋃
G) ⊆C (H) = H, since C

is a closure operator and H is a closed set. Thus C (
⋃

G) is the upper bound of
G. So set-inclusion is a complete lattice ordering on F , and the lattice operations
are as desired. �

The converse of this theorem is true as well, at least up to isomorphism, as
shown in Theorem 2.12.

THEOREM 2.12. Every complete lattice is isomorphic to the lattice of all
closed sets of some closed set system.

Proof. Let L be a complete lattice. Take F from the collection of all principal
ideals of L–that is, the all sets of the form:

{a : a ∈ L and a≤ b}= Db.

It is easy to check that F is a closed set system and that the function that takes b
to Db for all b ∈ L is an isomorphism. �

This theorem is a representation theorem for complete lattices, since it ren-
ders every abstract complete lattice isomorphic to some concrete complete lattice
of closed sets.

The closure operators SgA and CgA, where A is an algebra, were seen in
Corollaries 1.11 and 1.22 to have an additional property: The closure of a set is
the union of the closures of its finite subsets. This property, which is distinctively
algebraic, is not enjoyed by the familiar topological closure operation on the real
line.

DEFINITION 2.13. Let C be a closure operator on a set A. C is said to be
algebraic if and only if C(X) =

⋃
{C(Z) : Z ⊆ X and Z is finite}, for all X ⊆ A.

Let ≤ be an ordering of the set A. A subset B of A is said to be directed
upward by ≤ iff for all a,b ∈ B, there is c ∈ B such that a≤ c and b≤ c.

THEOREM 2.14. A closure operator is algebraic if and only if the union of any
collection of closed sets that is directed upward by ⊆ is itself a closed set. �

Knowing the close connection between closure operators and the correspond-
ing complete lattices of closed sets, we can hope for an order-theoretic property
consisting of the property of being algebraic for closure operators. This property
is suggested by the last corollary to Theorem 1.20.

DEFINITION 2.15. Let L be a complete lattice. An element a ∈ L is called
compact if and only if for all X ⊆ L, if a ≤

∨
X , then a ≤

∨
Y for some finite
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Y ⊆ X . L is said to be algebraic if and only if every element of L is the join of a
set of compact elements of L.

If C is a closure operator and K is a closed set, we say K is finitely generated
iff K = C(Z) for some finite set Z. In the lattice of closed sets arising from an
algebraic closure operator, the formation of the join of an arbitrary collection M
of closed sets can be reduced to the union of the collection of the joins of all the
finite subcollections of M.

THEOREM 2.16. If C is an algebraic closure operator, then its lattice of closed
sets is an algebraic lattice, and the compact elements of this lattice are exactly
the finitely generated closed sets. Conversely, every algebraic lattice is isomor-
phic of the lattice of closed sets for some algebraic closure operator.

Proof. Let C be an algebraic closure operator on A. We first argue that the
compact elements of the lattice of closed sets coincide with the finitely generated
closed sets. So suppose that Z is a finite subset of A and let H = C(Z). Let G
be any collection of closed sets such that H ⊆

∨
G. Since C is algebraic and Z

is finite, there is a finite set Y ⊆
⋃

G such that Z ⊆ C(Y ). Thus H ⊆ C(Y ) ⊆
C (
⋃

G) =
∨

G. Now pick G′ ⊆G so that G′ is finite and Y ⊆
⋃

G′. So H ⊆
∨

G′.
Therefore, every finitely generated closed set is compact. Now let H be any
compact member of the lattice of closed sets. Evidently,

H ⊆
∨
{C(Z) : Z ⊆ H and Z is finite}.

So there are finitely many finite subsets Z0,Z1, . . . ,Zk of H such that

H ⊆
∨
{C(Z0),C(Z1), . . . ,C(Zk)}

= C (C(Z0)∪C(Z1)∪·· ·∪C(Zk))
= C(Z0∪Z1∪·· ·Zk).

By letting Y = Z0∪Z1∪·· ·∪Zk, we see that

Y ⊆ H ⊆C(Y ).

Since H is a closed set, we conclude that H = C(Y ). Therefore, every compact
member of the lattice of closed sets is finitely generated.

The lattice of closed sets is algebraic, since (for any closure operator) every
closed set is the union of the closures of its finite subsets.

For the converse, suppose that L is an algebraic lattice, and let A be the set
of all compact elements of L. For each b ∈ L define

Db = {a : a ∈ A and a≤ b}.

It is easy to check that F = {Db : b ∈ L} is a closed set system and that the map
f from L onto F defined by f (b) = Db, for all b, is an isomorphism of L onto
the lattice F of closed sets (that f is one-to-one follows from the fact that L is
algebraic). To see that the associated closure operator is algebraic, we apply
Theorem 2.14.
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Let G = {Db : b∈ L} be a collection of closed sets directed by⊆. Notice that
for any elements b,c ∈ L, we have Dc ⊆ Db iff c≤ b. So the set X is directed by
≤. Let g =

∨
X . Now observe

a ∈ Dg iff a is compact and a≤
∨

X

iff a is compact and a≤
∨

X ′ for some finite X ′ ⊆ X

iff a is compact and a≤ b for some b ∈ X

iff a ∈ Db for some b ∈ X

iff a ∈
⋃

G.

So Dg =
⋃

G, making
⋃

G a closed set. Thus the closure operator associated
with F is algebraic. �

On any lattice L, SgL and CgL are algebraic closure operators. There are
three other algebraic closure operators connected with L, which we introduce
next.

DEFINITION 2.17. Let L be a lattice and U ⊆ L. U is said to be an ideal of
L iff U is nonempty, b ≤ a ∈U implies b ∈U , and a,b ∈U implies a∨ b ∈U .
Dually, U is a filter of L iff U is nonempty, b≥ a∈U implies b∈U , and a,b∈U
implies a∧b ∈U . U is called convex iff whenever a,c ∈U and a≤ b≤ c, then
b ∈U .

This definition of ideal has much in common with the definition in ring the-
ory. However, the correspondence between ideals in rings and congruences in
rings does not carry over to lattices. For example, M3 (see Figure 2.1) has five
ideals but only two congruence relations. One intuition about ideals in lattices
is that an ideal specifies a notion of “small elements.” The members of the ideal
are “small,” whereas the members of the lattice that lie outside the ideal are not
“small.” For example, in the lattice of all subsets of the unit interval, the sets with
Lebesgue measure zero constitute an ideal. Ideals of the form I(a] = {b : b≤ a}
are called principal ideals; dually, filters of the form I[a) are called principal
filters.

It is easy to verify that the intersection of any nonempty collection of ideals
of a lattice L is once more an ideal of L or it is empty. Thus the collection
consisting of the empty set and all the ideals of L is a closed set system. With
respect to ⊆, we obtain a complete lattice. Actually, the collection of ideals of L
(without the empty set) constitutes a sublattice that can fail to be complete. If L
has a least element, then the ideals of L form a complete lattice. Conversely, if
the ideals of L for a complete lattice, then L will have a smallest ideal, which is
easily seen to be a singleton set whose element must be the least element in the
lattice. We adopt the convention that Idl L, which we call the lattice of ideals of
L, is the lattice of ideals of L if L has a least element and is the lattice consisting
of the empty set and all the ideals of L otherwise. The situation for filters is dual
to that for ideals. We adopt a similar convention for Fil L, the lattice of filters of



2.2 Complete Lattices and Closure Systems 41

L. Cvx L denotes the lattice of convex sets in L; this lattice always includes the
empty set. IgL, FgL, and CvL denote the corresponding closure operators.

THEOREM 2.18. Let L be a lattice. Idl L, Fil L, and Cvx L are algebraic
lattices and L is isomorphic to a sublattice of both Idl L and Fil L∂ . Moreover,
if L is finite then Idl L∼= L∼= Fil L∂ . The intersection of any filter on L with any
ideal on L is always a convex subuniverse of L, and every convex subuniverse of
L arises in this way.

Proof. The following descriptions of IgL, FgL, and CvL reveal that they are
algebraic closure operators; in view of Theorem 2.16, the corresponding lattices
are algebraic lattices. Let X ⊆ L. Then

IgL(X) =
{

a : a≤
∨

Y for some finite Y ⊆ X
}

FgL(X) =
{

a :
∧

Y ≤ a for some finite Y ⊆ X
}

CvL(X) = {c : a≤ c≤ b for some a,b ∈ X} .

The reader can easily supply the proofs that these sets are, respectively, an ideal,
a filter, and a convex set.

The two maps

a 7→ {b : b≤ a}= I(a]
a 7→ {b : a≤ b}= I[a)

are the desired embeddings, and in case L is finite they are easily seen to be
surjective. Since filters and ideals are convex subuniverses, the intersection be-
tween a filter with an ideal is again a convex subuniverse. Finally, let B be a
convex subuniverse. Set

F = {a : b≤ a for some b ∈ B}

and
I = {a : a≤ b for some b ∈ B}.

F is a filter and I is an ideal, since B is a subuniverse. B = F ∩ I, since B is
convex. �

As a consequence, every lattice is embeddable in an algebraic lattice. On
the other hand, some infinite joins or meets that exist in L may not be preserved
by these embeddings. For example, the integers used under their usual ordering,
with top and bottom elements adjoined, comprise a complete lattice. Neither of
the embeddings described above preserve both infinite joins and meets. in this
case, the embeddings can be chosen differently so that arbitrary meets and joins
are preserved. In general, this is not possible (see Exercise 2.20(4) below). But,
as discussed in Example 2.22(6) below, every lattice is embeddable in a complete
lattice in such a way that whatever infinite joins and meets exist will be preserved.
Unfortunately, the complete lattices one obtains are no longer algebraic.
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In finite lattices, every element is the meet of a set of meet irreducible el-
ements; more generally, as we saw in Theorem 2.7, the same holds for lattices
with the ascending chain condition. a version of this statement holds in algebraic
lattices as well. Let L be a complete lattice and a ∈ L. The element a is called
strictly meet irreducible iff a =

∧
X implies that a ∈ X for every subset X of L.

Strictly join irreducible elements are defined dually.

THEOREM 2.19. In an algebraic lattice, every element is the mete of a set of
strictly meet irreducible elements.

Proof. Let a ∈ L and let b =
∧

X where

X = {d : a≤ d and d is strictly meet irreducible}.

It is clear that a ≤ b. Since L is algebraic, in order to prove that b ≤ a, all we
need to do is show that c≤ a for all compact c≤ b. For the sake of contradiction,
suppose c is compact and c≤ b but c 6≤ a. Let F = {y : a≤ y but c 6≤ y}. Plainly
a ∈ F , so F is not empty. Since c is compact, the join of any chain in F is again
a member of F . Hence every chain in F has an upper bound in F . By Zorn’s
Lemma, let m be maximal in F . Now m is strictly meet irreducible, since m < d
implies m∨ c ≤ d by the maximality of m. Thus m ∈ X , and so b ≤ m, contrary
to the choice of m ∈ F , since c≤ b. �

This theorem is a lattice-theoretic rendition of Birkhoff’s Subdirect Repre-
sentation Theorem (Theorem 4.1), which is one of the theorems we will find
most useful.

Exercises 2.20

1. a. Let F be a closed set system on A. Define CF on the power set of
A by CF(X) =

⋂
{K : X ⊆ K and K ∈ F}. Prove that CF is a closure

operator on A.
b. Let C be a closure operator on A. Define FC = {C(X) : X ⊆ A}. Prove

that FC is a closed set system on A.
c. For CF defined as in (a), prove that F = {CF(X) : X ⊆ A}.
d. For FC defined as in (b), prove that C(X) =

⋂
{K : X ⊆K and K ∈FC}

for all X ⊆ A.

2. a. Prove that if L is a lattice in which every set has a least upper bound,
then L is complete.

b. Prove that if L is a lattice in which every chain has a least upper
bound then L is complete.

c. Prove that if L is a lattice in which every well ordered chain has a
least upper bound, then L is complete.

3. Prove Theorem 2.14: A closure operator is algebraic iff the union of any
collection of closed sets that is directed upward by ⊆ is closed itself.
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4. Give an example of a complete lattice that cannot be embedded into an
algebraic lattice in such a way that arbitrary (infinite) joins and meets are
preserved.

5. (A. Tarski) Prove that if L is a complete lattice and f : L→L is an isotone
map, then f (a) = a for some a ∈ L. (Such an element a is called a fixed
point of f .)

6. Let C be an algebraic closure operator on A. We say that X ⊆ A is C-
independent iff x 6∈C (X−{x}) for all x ∈ X .

a. Prove the following are equivalent:

i. For every subset X ⊆ A and u,v ∈ A, if u ∈C (X ∪{v}) and u 6∈
C(X), then v ∈C (X ∪{u}).

ii. For every subset X ⊆ A and u ∈ A, if X is C-independent and
u 6∈C(X), then X ∪{u} is C-independent.

iii. For every X ⊆ A, if Y is a maximal C-independent subset of X ,
then C(X) = C(Y ).

iv. For every Y and X with Y ⊆ X ⊆ A, if Y is C-independent, then
there is a C-independent set Z with Y ⊆ Z⊆X and C(X) =C(Z).

b. Suppose that one of the equivalent conditions of (a) is fulfilled. Prove
that X and Y are C-independent and C(X) = C(Y ), then |X |= |Y |.

It is possible to associate with an arbitrary binary relation two closely con-
nected closure operators. Perhaps for this reason, closure operators and com-
plete lattices are quite commonly met in mathematics and quite frequently useful.
Here is how we make this association.

Let A and B be any two classes and let R be a binary relation from A to B
(that is, R ⊆ A×B). We are going to define two functions, one from the power
set of A into the power set of B and then from the power set of B into the power
set of A. These functions are called polarities of R. Let X ⊆ A and U ⊆ B. By
definition we take

X→ = {b : xRb for all x ∈ X}
U← = {a : aRu for all u ∈U}.

X→ is read “X polar,” and U← is read “U polar.” The fundamental properties of
polarities are gathered in the next theorem. The proof of this theorem is left as
an exercise.

THEOREM 2.21. Let A and B be classes and R⊆ A×B. Let → and ← be the
polarities of R. Then Then

i. X ⊆ X→← and U ⊆U←→ for all X ⊆ A and all U ⊆ B.

ii. If Y ⊆ X ⊆ A, then X→ ⊆ Y→.
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ii’. If V ⊆U ⊆ B, then U← ⊆V←.

iii. X→ = X→←→ and U← = U←→← for all X ⊆ A and U ⊆ B.

iv. →← is a closure operator on A whose closed sets are exactly the polars of
the subsets of B.

iv’. ←→ is a closure operator on B, whose closed sets are exactly the polars of
the subsets of A.

v. The lattice of closed subsets of A is isomorphic with the dual of the lattice
of closed subsets of B by the map induced by →. ← induces the inverse
isomorphism.

The polarities are said to establish a Galois connection between the two
closed set systems described in this theorem. Part of the usefulness of such
Galois connections resides in the possibility of drawing conclusions concerning
one of the closed set systems on the basis of information about the other system.
Galois connections also offer a mean of analyzing the underlying relations R.
We close this section with a list of examples of Galois connections.

EXAMPLE 2.22. i. Let q(x) be a polynomial with rational coefficients and
let A be the splitting field of q(x). Let B be the group of automorphisms of
A. Define R by

aRg iff g(a) = a.

The resulting closed subsets of A are the subfields of A, and the result-
ing closed subsets of B are the subgroups of B. This is essentially the
connection brought to light by Galois in his investigation of the roots of
polynomials.

ii. Let A be the n-dimensional affine space over Cn and let B be the ring
C[x0,x1, . . . ,xn−1]. Define R by

v̄Rp(x̄) iff p(v̄) = 0 in C.

The resulting closed subsets of Cn are known as affine algebraic varieties,
and the resulting closed subsets of the polynomial ring are the nilradical
ideals. This latter statement is a formulation of Hilbert’s Nullstellensatz.
This Galois connection is a starting point for the development of algebraic
geometry.

iii. Let A be a principal ideal domain and let B an A-module. Define R by

aRb iff ab = 0.

The closed subsets of A turn out to be certain ideals of A called annihila-
tors, and the closed subsets of B are certain submodules. This Galois con-
nection is a key to understanding the structure theory of finitely generated
modules over principal ideal domains. This theory in turn comprehends
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the Fundamental Theorem of Finitely Generated Abelian Groups and the
theorems concerning the existence of uniqueness of the Jordan and rational
canonical forms of matrices.

iv. Let U be a set, let Q be a finitary operation on U , and let S be a finitary
relation on U . We say that S is closed under Q (and that Q preserves
S) iff S is a subuniverse of 〈U,Q〉n, where n is the rank of S. The Galois
connection established in the ration R defined by

S R Q iff S is closed under Q

is of considerable importance to us. The resulting closed sets of operations
are known as clones. Clones will be more carefully introduced in Chap-
ter 4. A chapter in Volume 2 elaborates the theory of clones over finite sets
U . On the other side of the duality, notice that if 〈U,F〉 is an algebra, then
the unary relations in F← that belong to F← are precisely the congruence
relations of the algebra.

v. Fix a similarity type. Let A be the class of all algebras of this type and let
B be the set of all equations that can be expressed using variables and the
operation symbols of the type. Define R by

C R p≈ q iff p≈ q is true in C.

While the precise definitions of the concepts of equations and truth are
deferred to §4.11, our intent here should be clear. (Associativity and com-
mutativity are both expressed by equations; associativity is true in the mul-
tiplicative semigroup of 2× 2 matrices over the reals, but commutativity
is not.) The close sets of algebras turns out to be exactly the varieties,
and the closed sets of equations are the sets closed with respect to logical
consequence. This Galois connection is central for our subject. Its funda-
mental properties are among the chief concerns of Chapter 4 and will be
fully developed in later volumes.

vi. Let L be a lattice and take A = L = B. Let R be the binary relation ≤ on L.
The complete lattice of closed sets of the form X← where X ⊆ L is called
the Dedekind-MacNeille completion of L. The Dedekind-MacNeille
completion of the ordered set of rational numbers is (isomorphic to) the
ordered set of real numbers. The map that assigns {a}← to a for every
a ∈ L turns out to be an embedding of L into its Dedekind-MacNeille
completion, justifying the word “completion.” This map also preserves
whatever infinite joins and meets exist in L.

Exercises 2.23

1. Provide a proof for Theorem 2.21.

2. Prove that the Dedekind-MacNeille completion of the rationals with their
usual order is isomorphic to the reals with their usual order.
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3. Prove that the contention in Example 2.22(6) that the map described em-
beds L into its Dedekind-MacNeille completion and that this embedding
preserves whatever joins and meets exist in L.

2.3 Modular Lattices: The Rudiments

The study of congruence lattices is central in the development of our subject.
Such lattices must be algebraic, but they need have no other property. It turns
out, however, that most of the intensively investigated kinds of algebras, such as
groups, rings, modules, Boolean algebras, and lattices themselves, always have
congruence lattices with the following property:

For any elements a,b and c, if c≤ a, then a∧ (b∨ c) = (a∧b)∨ c.

This statement is called the modular law, and lattices for which it holds are
called modular lattices. The significance of the modular law, and indeed of
lattices generally, was first realized by Richard Dedekind. In this section, we
present the rudiments of the theory of modular lattices.

THEOREM 2.24. (Dedekind [1900]). The congruence lattice of any group is
modular.

Proof. Let G = 〈G, ·,−1 ,e〉 be a group and let p(x,y,z) denote the group theo-
retic expression

x
(
y−1z

)
.

For all a,b,c ∈ G, the following equalities hold:

p(a,b,b) = a

p(a,a,b) = b.

These two equalities allow us to express the join in Con G in terms of the com-
position of relations:

φ ∨ψ = φ ◦ψ for any φ ,ψ ∈ Con G.

Indeed, φ ∪ψ ⊆ φ ∨ψ is clear. To see that φ ∨ψ ⊆ φ ◦ψ , it is only necessary
to prove that φ ◦ψ is an equivalence relation. The reflexivity of φ ◦ψ followed
directly from the reflexivity of φ and ψ . To see the transitivity, suppose a φ ◦ψ b
and b φ ◦ψ c. Pick u and v in G so that a φ u ψ b and b φ v ψ c. Observe
that a = p(a,b,b) φ p(u,b,v) since a φ u and b φ v; since u ψ b and v ψ c,
p(u,b,v) ψ p(b,b,c) = c. Written more briefly,

a φ p(u,b,v) ψ c

or
a φ ◦ψ c
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and so φ ◦ψ is transitive. But now notice that φ ◦ψ ⊆ φ ◦ψ ◦φ ◦ψ ⊆ φ ◦ψ , where
the last inclusion is just the transitivity of φ ◦ψ . The symmetry of φ ◦ψ follows
easily from the symmetry of φ and ψ and from the inclusion ψ ◦φ ⊆ φ ◦ψ . In
this way we have verified that φ ∨ψ = φ ◦ψ .

Now we can easily show that Con G is modular. Let φ ,ψ and θ be congru-
ence relations on G so that φ ≤ θ . We will deduce

(φ ∨ψ)∧θ ≤ φ ∨ (ψ ∧θ)

or what is the same in this context in view of our reasoning above:

(φ ◦ψ)∩θ ⊆ φ ◦ (ψ ∩θ).

So let a and b be elements of G such that a (φ ◦ψ)∩θ b. Hence a φ ◦ψ b and
a θ b. Pick c ∈G so that a φ c and c ψ b. Since φ ⊆ θ , we obtain a θ c. So c θ b,
since θ is symmetric and transitive. Thus c (ψ ∩θ) b, and since a φ c, we can
conclude that a φ ◦ (ψ ∩θ) b. So Con G is modular (consult Exercise 2.2(6) for
the apparently missing reverse inclusion). �

This proof applies to a much wider class of algebras than groups. Indeed,
the only property of groups used in this proof was the existence of an expression
p(x,y,z), for which two particular equations were satisfies. Any algebra that al-
lows the construction of such an expression p(x,y,z) from its basic operations
will have a modular congruence lattice. For these algebras, an even stronger
property holds: The join of congruences coincides with the composition of re-
lations. This theme will be taken up again in §4.7 and will be explored in some
depth in later volumes.

0

a

c

1

b

N5

Figure 2.5:

Not every lattice is modular. Consider Figure 2.5. Notice that a ≤ c, but
a∨ (b∧ c) = a∨0 = a, whereas (a∨b)∧ c = 1∧ c = c. So N5 is not modular.

There are many statements equivalent to the modular law. Some are included
in the next theorem, but others can be found in the next set of exercises.

THEOREM 2.25. (Dedekind [1900]). For any lattice L the following state-
ments are equivalent:
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i. L is modular.

ii. For any a,b,c ∈ L, if c≤ a, then a∧ (b∨ c)≤ (a∧b)∨ c.

iii. ((a∧ c)∨b)∧ c = (a∧ c)∨ (b∧ c) for all a,b,c ∈ L.

iv. For any a,b,c ∈ L, if a≤ c, a∧b = c∧b, and a∨b = c∨b, then a = c.

v. L has no sublattice isomorphic to N5.

Proof. (i) ⇔ (ii) In every lattice, if c ≤ a, then (a∧ b)∨ c ≤ a∧ (b∨ c). So
the equivalence of (i) and (ii) is clear.

(i)⇔ (iii) Since a∧c≤ c is true in every lattice, the equation displayed in
(iii) must hold in every modular lattice. Conversely, suppose the equation in (iii)
holds in L and let a,b, and c be elements of L such that a≤ c. Then a = a∧c, so

(a∨b)∧ c = ((a∧ c)∨b)∧ c = (a∧ c)∨ (b∧ c) = a∨ (b∧ c).

(i) ⇒ (iv) According to the following equations, every modular lattice
satisfies (iv):

a = a∨a∧b by absorption,
= a∨ (c∧b) since a∧b = c∧b,

= a∨ (b∧ c)
= (a∨b)∧ c by modularity,

= (c∨b)∧ c since a∨b = c∨b,

= c.

(iv)⇔ (v) Evidently, lattices that satisfy (iv) cannot have sublattices iso-
morphic to N5.

(v) ⇔ (i) We argue the contrapositive. Suppose L is not modular. Pick
a,b, and c from L so that a≤ c but a∨ (b∧ c 6= (a∨b)∧ c. The elements of L in
Figure 2.6 constitute a sublattice of L isomorphic to N5:

It is necessary to prove that these elements are actually distinct and that the
joins and meets work as indicated in the diagram. First, observe that

b∧ c < a∨ (b∧ c) < (a∨b)∧ c < a∨b,

where the middle < follows since a ≤ c, and all the inequalities must be strict
since a∨ (b∧ c) 6= (a∨ b)∧ c. (Collapsing the strict inequality at either end
collapses the whole chain.) Second, observe that

b∧ c < b < a∨b,

where the strictness once more follows from a∨ (b∧c) 6= (a∨b)∧c. Also, note
that a∨ (b∧ c) 6≤ b and that b 6≤ (a∨ b)∧ c. Thus, the Hasse diagram drawn
above is correct. Finally, to see that the joins and meets are correct, just observe
that

(a∨ (b∧ c))∨b = a∨ ((b∧ c)∨b) = a∨b
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b∧ c

a∨ (b∧ c)

(a∨b)∧ c

a∨b

b

Figure 2.6:

and
((a∨b)∧ c)∧b = ((a∨b)∧b)∧ c = b∧ c.

�

This theorem reveals several things about the class of all modular lattices.
Part (v) allows us to determine the modularity of a lattice by referring to its
Hasse diagram, at least if the lattice is relatively small. Actually, this works
best in proving a lattice nonmodular through the discovery of a copy of N5.
The task of discovering a copy of N5 might be exhausting, but once it is in
hand, the task is basically finished. Of course, one must be careful to verify that
the joins and meets are correct, since the diagram may present only the order
structure clearly. As a means for concluding that a lattice is modular, part (v) may
not be very helpful, since all possible five-element subsets must be examined.
Part (iii) guarantees that subalgebras, homomorphic images, and direct products
of modular lattices are once more modular. Modular lattices can be characterized
in another very useful manner. manner.

DEFINITION 2.26. Let L be a lattice and let a ∈ L. Let φa and ψa be the maps
from L into L described by

φa(x) = x∧a for all x ∈ L

ψa(x) = x∨a for all x ∈ L.

Now let a,a′,b,b′ ∈ L such that a≤ b and a′ ≤ b′. The interval I[a,b] transposes
up to I[a′,b′] iff b′ = b∨ a′ and a = b∧ a′. Dually, I[a,b] transposes down
to I[a′,b′] iff b = a∨b′ and a′ = a∧b′. We use I[a,b]↗ I[a′,b′] to mean I[a,b]
transposes up to I[a′,b′]. I[a,b]↘ I[a′,b′] is used to mean I[a,b] transposes down
to I[a′,b′].

We call I[a,b] and I[a′,b′] transposes if either of these relations hold, and we
call the appropriate map (either ψa′ or φb′ ) between the intervals a perspectivity
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map. Finally, we say that I[a,b] and I[a′,b′] are projective iff there is a finite
sequence

I[a,b] = I[c0,d0], I[c1,d1], . . . , I[cn,dn] = I[a′,b′]

such that I[ci,di] and I[ci+1,di+1] are transposes for i < n. The map that results
from composing the perspectivity maps associated with this sequence of trans-
poses is called a projectivity map.

Note that, in general, intervals can be projective by way of many sequences
of transposed intervals. The basic facts about perspectivity maps were realized
by R. Dedekind[].

THEOREM 2.27 (Dedekind’s Transposition Principle). Let M be a modular
lattice and let a and b be elements of M. The map φa induces an isomorphism
from I[b,a∨b] onto I[a∧b,a], and ψb induces the inverse isomorphism. More-
over, the image under either of these maps of a subinterval is a transpose of that
subinterval.

Proof. In view of modularity, for all x ∈ I[b,a∨b]

ψb (φa(x)) = (x∧a)∨b = x∧ (a∨b) = x

and for all x ∈ I[a∧b,a]

φa (ψb(x)) = (x∨b)∧a = x∨ (b∧a) = x.

Hence, ψb ◦φ−a induces the identity function on I[b,a∨b], and φa ◦ψb induces
the identity function on I[a∧b,a]. Consequently, φa induces a one-to-one func-
tion from I[b,a∨b] onto I[a∧b,a], and ψb induces its inverse. To conclude that
these functions are isomorphisms, it is only necessary to note that φa is isotone,
since x≤ y implies x∧a≤ y∧a is true in every lattice.

To see that subintervals are mapped onto transposes, pick x and y so that
b ≤ x ≤ y ≤ a∨ b. φa induces a one-to-one map from I[x,y] onto I[x∧ a,y∧ a].
To see that these two intervals are transposes, let y′ = y∧ a. We need to verify
that x∧a = x∧ y′ and that y = x∧ y′. This is straightforward:

x∧ y′ = x∧ (y∧a) = (x∧ y)∧a = x∧a

and

modularity
↓

y≤ (a∨b)∧ y≤ (a∨ x)∧ y≤ (x∨a)∧ y = x∨ (a∧ y) = x∨ y′

= (x∨a)∧ y≤ y

�

Applied to the congruence lattice of a group, Dedekind’s Transposition Principle
is another abstraction of one of the familiar “Isomorphism” theorems. In fact,
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this is the first of several results that were first established about normal sub-
groups of a group but which are related to general results for modular lattices.
Other group theoretic results that have led to theorems for modular lattices are
the Jordan-Hölder Theorem (see Theorem 2.37) and the Krull-Schmidt Theorem
(see the Direct Join Decomposition Theorem).

COROLLARY 2.28. Projective intervals in a modular lattice are isomorphic.

COROLLARY 2.29. Let L be a modular lattice and a,b,c ∈ L with a 6= b.

i. If a and b both cover c, then a∨b covers both a and b.

ii. If c covers both a and b, then a and b both cover a∧b.

THEOREM 2.30. The following statements are equivalent for any lattice L:

i. L is modular.

ii. φa and ψb induce inverse isomorphisms between I[b,a∨b] and I[a∧b,a]
for all a and b in L.

Proof. That (i) implies (ii) is just part of Dedekind’s Transposition Principle.
For the converse, suppose L is not modular. Inside L, find a copy of N5 and
label it as in Figure 2.7. Since φa(c) = a∧ b = φa(b), we see that φa is not
one-to-one. �

a∧b

b

c

a∨b

a

Figure 2.7:

The proof of the next theorem illustrates another use of Dedekind’s Transpo-
sition Principle.

THEOREM 2.31. (Birkhoff [1948].) Let L be a modular lattice and let a and
b be members of L. Set L0 = I[a∧ b,a] and L1 = I[a∧ b,b] and let L2 be the
sublattice of L generated by L0∪L1. Then L2 ∼= L0×L1.

Proof. We define the described isomorphism F : L0×L1→ L2 for all x ∈ I[a∧
b,a] and y ∈ I[a∧b,b] by:

F(x,y) = x∨ y.
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Before showing that F is an isomorphism onto L2, we note the following simple
facts:

i. I[a∧b,a]↗ I[b,a∨b] and I[a∧b,b]↗↗ I[a,a∨]b.

ii. If a∧b≤ x≤ a, then x = φa (ψb(x)) == a∧ (x∨b).

iii. If a∧b≤ y≤ b, then y = φb (ψa(y)) = b∧ (y∨a).

iv. If a∧b≤ x≤ a, and a∧b≤ y≤ b, then

x∨ y = φa (ψb(x))∨ y = y∨ (a∧ (x∨b))
= (y∨a)∧ (x∨b) = ψa(y)∧ψb(x).

Thus F(x,y) = x∨ y = ψb(x)∧ψa(y) for all 〈x,y〉 ∈ L0×L1.

CLAIM 0: F is a homomorphism.
Pick 〈x,y〉 and 〈x′,y′〉 ∈ L0×L1.

F
(
〈x,y〉∨ 〈x′,y′〉

)
= F(x∨ x′,y∨ y′)
= (x∨ x′)∨ (y∨ y′)
= F(x,y)∨F(x′,y′).

Thus F preserves joins.

F
(
〈x,y〉∧ 〈x′,y′〉

)
= F(x∧ x′,y∧ y′)
= ψb(x∧ x′)∧ψa(y∧ y′)
= ψb(x)∧ψb(x′)∧ψa(y)∧ψa(y′)
= ψb(x)∧ψa(y)∧ψb(x′)∧ψa(y′)
= F(x,y)∧F(x′,y′).

So F preserves meets.
CLAIM 1: F is one-to-one.

Notice that x can be recovered from x∨ y as follows:

(x∨ y)∧a = ((x∨b)∧ (y∨a)) = (x∨b)∧a = x∨ (b∧a) = x.

In a similar way, y can be recovered. Hence, F(x,y) = F(x′,y′) implies x = x′

and y = y′.
CLAIM 2: F is onto L2.

Just note that the image of L0×L1 under F is a lattice, and it is comprised of
all joins x∨ y where x ∈ [a∧b,a] and y ∈ [a∧b,b]. �

The lattice M3 diagrammed in Figure 2.8 illustrates that, even for finite mod-
ular lattices, there may be several distinct ways to represent an element as the
join of join irreducible elements. But the next theorem, due to Kurosh [] and
Ore [], asserts some uniqueness in such representations.
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Figure 2.8:

DEFINITION 2.32. Let L be a lattice and let M be a finite subset of L. M is
called join irredundant iff for all proper subsets N of M,∨

N <
∨

M.

Meet irredundance is the dual notion.

THEOREM 2.33. [The Kurosh-Ore Theorem] Let L be a modular lattice and
a ∈ L. Suppose that

a = a1∨a2∨·· ·∨an = b1∨b2∨·· ·∨bm

where {ai : 0 < i ≤ n} and {b j : 0 < j ≤ m} are join irredundant sets of join
irreducibles and the ai’s are distinct, as are the b j’s. Then n = m, and, after
renumbering,

a = b1∨a2∨a3∨·· ·∨an
= b1∨b2∨a3∨·· ·∨an
...
= b1∨b2∨·· ·∨bn−1∨an.

Proof. We will first establish that a = b j ∨ a2 ∨ a3 ∨ ·· · ∨ an for some j. Let
c = a2 ∨ a3 ∨ ·· · ∨ an. Then I[c,a] transposes down to I[c∧ a1,a1], so these in-
tervals are isomorphic by Dedekind’s Transposition Principle. Since a1 is join
irreducible, a must also be join irreducible in I[c,a]. But clearly

a = (b1∨ c)∨ (b2∨ c)∨·· ·∨ (bm∨ c),

so a = b j ∨ c for some j, as promised.
Suppose, for the moment, that n < m. Continuing the above process will ulti-

mately yield a as a join of only n of the b j’s, in contradiction to irredundancy. By
symmetry, m < n is also contradictory, so we have n = m. The desired equalities
now follow easily by iterating the above method. �

We conclude this section with a simple result concerning complementation in
modular lattices. Let L be a bounded lattice with largest element 1 and smallest
element 0. Let a∈ L. The element c∈ L is called a complement of a iff a∧c = 0
and a∨ c = 1. L is said to be a complemented lattice iff every element of L
has a complement; L is called relatively complemented provided every interval
I[a,b] in L, when constructed as a sublattice, is a complemented lattice. The
lattice of all subspaces of a finite dimensional vector space is easily seen to be a
complemented lattice. lattice.
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THEOREM 2.34. Every complemented modular lattice is relatively comple-
mented.

Proof. Let M be a completed modular lattice and let a≤ x≤ b hold in M. Let y
be a complement of x in M. So x∨ y = 1 and x∧ y≤ 0. But just notice:

a = 0∨a = (0∧b)∨a = ((x∧ y∧b)∨a = (x∧ (y∧b))∨a

= x∧ ((y∧b)∨a)

and dually,

b = 1∧b = (1∨a)∧b = ((x∨ y)∨a)∧b = (x∨ (y∨a))∧b

= x∨ ((y∨a)∧b) .

But since (y∨a)∧b = (a∨ y)∧b = a∨ (y∧b) = (y∧b)∨a and since

a≤ (y∧b)∨a≤ b

we conclude that (y∧b)∨a is a complement of x in I[a,b]. �

Exercises 2.35

1. Let L be a finite lattice. Prove that L is modular iff I[a∧b,a]∼= I[b,a∨b]
for all a,b ∈ L.

2. Construct a lattice that is not modular such that I[a∧b,a]∼= I[b,a∨b] for
all a,b ∈ L.

3. Prove that in a modular lattice no element can have two distinct comple-
ments that are comparable to each other.

4. A lattice is said to satisfy the upper covering property (or said to be
semimodular) iff given a,b, and c, if a ≺ b, then either a∨ c = b∨ c or
a∨ c ≺ b∨ c. The lower covering property (or lower semimodularity)
is the dual notion.

a. Prove that every modular lattice has both the upper and lower cover-
ing property.

b. Construct a nonmodular lattice with both the upper and lower cover-
ing property.

c. Let L be a lattice. Prove that L is semimodular iff for all a,b ∈ L, if
a∧b≺ a, then b≺ a∨b.

5. Prove that the join irreducible elements of a complemented modular lattice
are exactly the atoms of the lattice.
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2.4 Modular Lattices wit the Finite Chain Condi-
tion

Some very fruitful directions in algebra were opened by the observation that
infinite algebras satisfying various “finiteness conditions” were amenable to an
almost combinatorial analysis. Often these “finiteness conditions” amount to re-
strictions on ascending or descending chains in the lattice of congruence relations
on the algebras. Noetherian and Artinian rings are specified by just such condi-
tions. Moreover, among vector spaces, the finite dimensional ones are exactly
those that have congruence lattices in which every chain is finite. The struc-
ture theorems for a very broad range of algebras, which emerge in later chapters
(especially Chapter 5), flow from some of the principal theorems concerning
modular lattices in which every chain is finite. The length of a finite chain with
n+1 elements is n.

DEFINITION 2.36. A lattice L satisfies the finite chain condition iff every
chain in L is finite.

Every lattice with the finite chain condition has a greatest element and a
least element. According to the Hausdorff Maximality Principle, every lattice
has a maximal chain. Hence, lattices with the finite chain condition must have
finite maximal chains. A finite maximal chain is one in which each “link” is
a covering and in which the top and bottom elements are the 1 and 0 of the
lattice. Even so, it is not possible to bound the lengths of the chains in such
a lattice, as Figure 2.9 reveals. This sort of pathology does nt happen among
modular lattices, as the next theorem confirms. Perhaps this was first realized
in the context of congruence lattices of finite groups (the familiar Jordan-Hölder
Theorem), and it may have been one of the clues that led Dedekind to formulate
the concept of modularity. Ore [] has also been credited with the following result.
An alternative proof based on one of the most familiar proofs of the group result
is sketched in the exercises.

THEOREM 2.37. (Dedekind [1900], Birkhoff [1933].) Let L be a modular
lattice and let a < b in L. If there is a finite maximal chain from a to b, then
every chain from a to b is finite, and all the maximal ones have the same length.
If

a = a0 ≺ a1 ≺ a2 ≺ ·· · ≺ an = b

and
a = c0 ≺ c1 ≺ c2 ≺ ·· · ≺ cn = b,

then the intervals I[ai,ai+1] and I[c j,c j+1] can be matched in such a way that
matching intervals are projective.

Proof. Let us call two finite chains equivalent iff they have the same length
and have the property described in the final sentence of the theorem (applied to
arbitrary chains, not just maximal chains). This specifies an equivalence relation
on finite chains between two elements of L.
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· · ·

Figure 2.9:

We argue by induction on the length of a finite maximal chain from a to b.
Let a = a0 ≺ a1 ≺ ·· · ≺ an = b be a finite maximal chain from a to b.
INITIAL STEP: n = 1. The definition of covering leaves nothing to prove.
INDUCTIVE STEP: n > 1. Our induction hypothesis is that the conclusions of
the theorem hold for any two elements linked by a maximal chain of length less
than n. Let C be a maximal chain from a to b. If a1 ∈ C, then C−{a0} is a
maximal chain from a1 to b, and the induction hypothesis applied to a1 and b
yields all the desired conclusions. In the remaining case, pick c ∈C such that c
and a1 are incomparable. Hence a1∧ c = a0. Let d = a1∨ c. Thus

I[a0,c]↗ I[a1,d] and I[a0,a1]↗ I[c,d].

Let C0 = {c′ ∈ C : c′ < c} and C1 = {c′ ∈ C : c ≤ c′}. Let D0 be the image of
C0 under the first perspectivity map and let D1 be any maximal chain from d
to b. (Such a chain must exist according to the Hausdorff Maximality Princi-
ple applied to I[d,b].) Figure 2.4 suggests an arrangement of these chains. By
Dedekind’s Transposition Principle, D0 ∪{d} is a maximal chain from a1 to d,
since C0∪{c} is a maximal chain from a0 to c. Thus D0∪D1 is a maximal chain
from a1 to b.

According to the induction hypothesis, D0 ∪D1 and a1 ≺ a2 ≺ ·· · ≺ b are
equivalent. By the Dedekind Transposition Principle, C0∪D1∪{c} and

a = a0 ≺ a1 ≺ ·· · ≺ an = b

are equivalent. The induction hypothesis also yields {c}∪D1 equivalent to C1,
so C is equivalent to C0∪D1∪{c}. Therefore, C is equivalent to

a = a0 ≺ a1 ≺ ·· · ≺ an = b.

�
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a0

b

ca1

a2

a3

an−1

d

...

C0

D0

D1

C1

Figure 2.10:

DEFINITION 2.38. A lattice L is said to be of finite height iff there is a finite
upper bound to the length of the chains in L. The least such upper bound is called
the height of L. A lattice L is said to be sectionally of finite height iff L has a
least element 0, and for every a ∈ L, the interval I[0,a] is of finite height. In this
case the height of I[0,a] will be denoted by h(a) and called the height of a.

Every lattice of finite height satisfies the finite chain condition. From Theo-
rem 2.37, it follows that every modular lattice with the finite chain condition is a
lattice of finite height. In modular lattices sectionally of finite height, the height
function is very well behaved, as the next theorem reveals. The proof is left as
an exercise.

THEOREM 2.39. Let L be a modular lattice sectionally of finite height. Then
for all a,b ∈ L,

i. h(0) = 0.

ii. If a < b, then h(a) < h(b).

iii. h(a)+h(b) = h(a∨b)+h(a∧b).

�

THEOREM 2.40. Every bounded modular lattice in which 1 is the join of a
finite set of atoms is a relatively complemented modular lattice of finite height.
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Proof. Let L be a bounded modular lattice in which 1 is the join of a finite set
A of atoms. We first argue that L is of finite height. In view of Theorem 2.37
and the fact that every chain can be extended to a maximal chain, we need only
find one finite maximal chain from 0 to 1. We construct this chain recursively
as follows. Let c0 = 0. If ci 6= 1, then pick ai ∈ A such that ai 6≤ ci and let
ci+1 = ci∨ai.

Since A is finite, this construction stops after finitely many steps and produces
a chain 0 = c0 < c1 < · · ·< cn = 1. But observe that ci∧ai = 0, since ai is an atom
not less than ci. Consequently, I[0,ai] transposes up to I[ci,ci+1]. By Dedekind’s
Transposition Principle, we conclude that ci ≺ ci+1 for all i < n, so there is a
finite maximal chain from 0 to 1.

According to Theorem 2.34, we need only show that L is complemented.
The construction we just used actually produces complements. Indeed, let x ∈ L
and proceed as follows. Let d0 = x. If di 6= 1, then pick ai ∈ A such that ai 6≤ di
and let di+1 = di∨ai.

Since A is finite, this construction stops after finitely many steps, producing
let us say a0,a1, . . . ,an. Take y = a0∨a1∨·· ·∨an. By the construction we have
x∨y = 1. By Theorem 2.39, x∧y = 0 iff h(x∧y) = 0. First observe that for each
i < n,

h(x∨a0∨·· ·∨ai∨ai+1) = h(x∨a0∨·· ·∨ai)+h(ai+1).

Consequently,
h(x∨ y) = h(x)+h(a0)+ · · ·+h(an),

and, by the same reasoning applied to the sequence of ai’s, we have

h(y) = h(a0)+ · · ·+h(an).

Therefore h(x∨ y) = h(x)+h(y). By Theorem 2.39,

h(x∧ y) = h(x)+h(y)−h(x∨ y) = 0.

�

The three conditions listed in the Theorem 2.39 above are familiar properties
of the dimension function applied to subspaces of a finite dimensional vector
space.

DEFINITION 2.41. Let L be a lattice with least element 0. A function d : L→
ω with the following properties

i. d(0) = 0.

ii. If a < b, then d(a) < d(b).

iii. d(a)+d(b) = d(a∨b)+d(a∧b).

is called a dimensional function on L. A lattice is said to be finite dimensional
iff it is bounded and there is a dimension function on it.
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The height function might be regarded as the natural dimension function on
a modular lattice that is sectionally of finite height. This is the case, for example,
with the lattice of finite dimensional subspaces of a vector space. The height
function h puts h(a) = 1 for every atom a in the lattice, a condition we did
not include in the definition of dimension function but which will be of use in
Chapter 4.

THEOREM 2.42. For any lattice L the following are equivalent:

i. L is finite dimensional.

ii. L is a modular lattice with the finite chain condition.

iii. L is a modular lattice of finite height.

Proof. As we remarked after Theorem 2.37, parts (ii) and (iii) are equivalent.
Part (i) follows from (iii) by Theorem 2.39, since lattices of finite height are
bounded.

To prove that (i) implies (ii), let L be a bounded lattice with dimension func-
tion d. By properties (i) and (ii) of the dimension function, no chain in L can have
length greater than d(1). Therefore, L has the finite chain condition. Finally, to
verify the modularity of L, pick a,b,c ∈ L with a ≤ c. Since L is a lattice, we
know that a∨ (b∧ c) ≤ (a∨ b)∧ c. In view of property (ii) of d, equality will
hold iff d (a∨ (b∧ c)) = d ((a∨b)∧ c). But observe by property (iii) of d:

d (a∨ (b∧ c)) = d(a)+d(b∧ c)−d(a∧b∧ c)
= d(a)−d(a∧b)+d(b∧ c)
= d(a∨b)−d(b)+d(b∧ c)
= d(a∨b)−d(b∨ c)+d(c)
= d(a∨b)−d(a∨b∨ c)+d(c)
= d(a∨b)+d ((a∨b)∧ c)−d(a∨b)
= d ((a∨b)∧ c) .

�

The Kurosh-Ore Theorem is a step toward a unique join decomposition the-
orem for modular lattices, but it falls short. It is not difficult to devise finite
modular lattice in which there are elements that can be written as joins of many
different finite sets of join irreducibles. But it is possible, for modular lattices of
finite height, to obtain a stronger decomposition theorem , the Direct Join De-
composition Theorem. This stronger result concerns not arbitrary joins of finite
sets, but rather joins of sets of a rather restricted kind that we will call directly
join independent sets. Moreover, the uniqueness obtained is really “uniqueness
up to direct join isotopy,” where direct join isotopy is a certain equivalence re-
lation between the elements of the lattice. Just as Theorem 2.37 was inspired
by the Jordan-Hölder Theorem from group theory, the Direct Join Decomposi-
tion Theorem can be traced to some well-known theorems in group theory. In
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Kronecker [] it was shown that any finite Abelian group can be written as a di-
rect product of directly indecomposable Abelian groups in an essentially unique
way. This result has been extended in various ways. Perhaps the best known
goes under the name of the Krull-Schmidt Theorem, which asserts that every
group whose normal subgroup lattice satisfies the finite chain condition can be
decomposed into a direct product of directly indecomposable groups in essen-
tially only one way (see also Wedderburn [].) It was Ore [] who realized that this
unique factorization property could really be traced to a purely lattice-theoretic
property o the congruence lattice of the group. It has turned out to be possible
to use the resulting Direct Join Decomposition Theorem to obtain unique direct
factorization results for much wider classes of algebras than just finite groups.
This point is taken up again in Chapter 4 and more extensively in Chapter 5,
which is devoted to unique direct factorizations. Our development of the Direct
Join Decomposition Theorem relies heavily on Jónsson [].

DEFINITION 2.43. Let L be a lattice with least element 0. A subset M ⊆ L is
directly join independent iff whenever N is a finite subset of M and a ∈M−N,
then a∧

∨
N = 0. An element a ∈ L is called directly join irreducible iff 0 < a

and a = b∨c with {b,c} directly join independent and b 6= c, then b = 0 or c = 0.
IND(L) denotes the collection of directly join independent subsets of L.

For notational convenience, we introduce a partial operation ⊕, referred to
as direct join, on the lattice L. a⊕b is defined whenever a∧b = 0, and it takes
the value a∨b in that case. Thus, a⊕b = c is equivalent to the assertion of the
following three conditions:

i. {a,b} is directly join independent,

ii. a∨b = c, and

iii. a 6= b or a = 0 = b.

DEFINITION 2.44. Let L be a lattice with least element 0 and let a,b ∈ L. The
elements a and b are directly join isotopic in one step iff there is c ∈ L such
that a⊕ c = b⊕ c. a and b are said to be directly join isotopic iff there is a
finite sequence d0,d1, . . . ,dn of elements of L such that a = d0, dn = b, and di is
directly join isotopic with di+1 in one step, for each i = 0,1, . . . ,n−1.

Notice that if a and b are directly join isotopic in a lattice L, then I[0,a]
and I[0,b] are projective intervals in L; the associated projectivity map will be
referred to as a join isotopy map. One-step direct join isotopy is not a transitive
relation, even in finite modular lattices; see Exercises 2.49(10).

The notions dual to direct join independence, direct join irreducibility, and
direct join isotopy apply to lattices with a greatest element and are referred to,
respectively, as direct meet independence, direct meet irreducibility, and di-
rect meet isotopy. Actually, these dual notions 9and variants of them) are the
ones used in Chapters 4 and 5 to obtain unique direct factorization results for
algebras. But it has now been traditional in lattice theory to approach this mate-
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rial from the direct join viewpoint. For the remainder of this section, we will be
concerned exclusively with the selfdual class of modular lattices of finite height.

To illustrate these concepts, let L be the lattice of all subsets of some set X . It
is easy to see that a collection of subsets of X will be directly join independent iff
it is a collection of pairwise disjoint sets. The only directly join irreducibles are
the singleton sets, and two sets are directly join isotopic iff they are equal. Taking
L to be the lattice of subspaces of the three-dimensional real vector space, it is not
very hard to classify the directly join independent subsets of L. Accomplishing
the same task for the four-dimensional real vector space is more time-consuming
but may provide a better intuitive feel for these notions.

In the setting of finite dimensional lattices, direct join independent takes on
an especially simple form.

THEOREM 2.45. Let L be a fintie dimensional lattice with dimension function
d and let M ⊆ L. M is directly join independent iff M is finite and d (

∨
M) =

∑
a∈M

d(a).

Proof. First suppose that M is directly join independent and let N be any finite
subset of M. We will prove by induction on |N| that

d
(∨

N
)

= ∑
a∈N

d(a).

This will entail that M is finite, since d(a)≥ 1 provided that a 6= 0 and since d(1)
is an upper bound on d (

∨
N) for all finite N. In the initial step of the induction,

N is empty and the conclusion is immediate. For the inductive step, let a ∈ N
and set N′ = N−{a}. Then

d
(∨

N
)

= d
(

a∨
∨

N′
)

= d(a)+d
(∨

N′
)
−d
(

a∧
∨

N′
)

= d(a)+d
(∨

N′
)
−d(0) since M is directly join independent

= d(a)+d
(∨

N′
)

= d(a)+ ∑
a′∈N′

d(a′) by the induction hypothesis

= ∑
b∈N

d(b).

For the converse, we need the following extension of the dimension formula
occurring as (iii) in Definition 2.41: For any n distinct elements a0,a1, . . . ,an−1
of L

d(a0∨a1∨·· ·∨an−1) = d(a0)+d(a1)+ · · ·+d(an−1)
− [d(a0∧ (a1∨·· ·∨an−1))

+d(a1∧ (a2∨·· ·∨an−1))+ · · ·
+d(an−2∧an−1)].



62 Chapter 2 Lattices

This formula can be established by induction. Now observe that the formula
above depends on the order in which the ai’s have been indexed. Plainly, we
have one such formula for each of the n! ways of indexing available.

Suppose that M is a set with n elements such that

d
(∨

M
)

= ∑
b∈M

d(b).

Let N be any subset of M, say with k elements, and pick c ∈ N, setting N′ =
N−{c}. We must argue that c∧

∨
N′ = 0. Now let M = {a0,a1, . . . ,an−1} so

that c = an−k and N′= {an−k+1, . . . ,an−1}. According to the extended dimension
formula above and the condition just imposed on d (

∨
M), we conclude that

d (a0∧ (a1∨·· ·∨an−1))+ · · ·+d
(

c∧
∨

N′
)

+ · · ·+d(an−2∧an−1) = 0.

Since d only produces non-negative values, we conclude that all the terms of this
sum are 0. In particular, d (c∧

∨
N′) = 0. But this implies that c∧

∨
N′ = 0, as

desired. Hence, M is directly join independent. �

Before turning to the Direct Join Decomposition Theorem, we gather in the
next theorem the fundamental properties of directly join independent sets in
modular lattices of finite height that we shall use. Most of these properties follow
very easily from the definitions and Theorem 2.45. However, the ten properties
listed are more than useful tools. in fact, they constitute all the conditions on the
family IND(L) necessary to establish the Direct Join Decomposition Theorem
for the finite dimensional lattice L. As a consequence, any family I of subsets of
L that has all the properties attributed below to IND(L) will give rise to a variant
of the Direct Join Decomposition Theorem. We could have introduced an ab-
stract concept of “join independence family,” using the ten properties below as a
definition, and then established a more general theorem. Observe that the notion
of direct join irreducibility depends on the notion of direct join independence.
Direct join isotopy and the direct join operation are also derivative notions. To
obtain a variant of the Direct Jon Decomposition Theorem for a “join indepen-
dence family” I, these notions must both be modified by referring them to I in
place of IND(L). The specific notion of direct join independence introduced
above would then be one example of a “join independence family.” In §5.3, we
will invoke the Direct Join Decomposition Theorem for a slightly different no-
tion of join independence. That notion and the one defined in 2.43 are the only
kinds of “join independence families” in this volume.

THEOREM 2.46. Let L be a modular lattice of finite height.

i. If N ⊆M ∈ IND(L), then N ∈ IND(L).

ii. If M ∈ IND(L), then M∪{0} ∈ IND(L).

iii. If a⊕b ∈M ∈ IND(L), then (M−{a⊕b})∪{a,b} ∈ IND(L).

iv. If a,b ∈M ∈ IND(L) and a 6= b, then (M−{a,b})∪{a⊕b} ∈ IND(L).
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v. If M ∈ IND(L) and f : M → L such that f (x) ≤ x for all x ∈ M, then
{ f (x) : x ∈M} ∈ IND(L).

vi. If a⊕a′ = b⊕b′ = a∨b′ = a′∨b, then a⊕b′ = a′⊕b = a⊕a′.

vii. If {a,a′} ∈ IND(L) with a 6= a′ and b < a, then b⊕a′ < a⊕a′.

viii. If b≤ a⊕a′, b 6≤ a, and {a∧ (a′∨b),b} ∈ IND(L), then {a,b} ∈ IND(L).

ix. If a = a⊕b, then b = 0.

x. If a⊕ b is directly join isotopic with c, then there are a′ and b′ such that
c = a′⊕ b′, and a is directly join isotopic with a′ and b is directly join
isotopic with b′.

Proof. i. This is completely straightforward.

ii. This is also immediate.

iii. Suppose that a⊕ b, a1, . . . ,an−1 is a list of all the distinct elements of M.
To see that (M−{a⊕b})∪{a,b} is directly join independent, we invoke
Theorem 2.45.

d(a∨b∨a1∨a2∨·· ·∨an−1) = d ((a⊕b)∨a1∨a2∨·· ·∨an−1)
= d(a⊕b)+d(a1)+d(a2)+ · · ·+d(an−1)
= d(a)+d(b)+d(a1)+d(a2)+ · · ·+d(an−1).

iv. The argument just given for (iii) can be easily rearranged to prove this part.

v. This follows easily from the definition of direct join independence.

vi. We assume that none of a,a′,b,b′ is 0, since otherwise the desired result is
immediate from the definition of direct join independence. Hence a 6= a′

and b 6= b′. The hypotheses now give the following dimension equations:

d(a)+d(a′) = d(b)+d(b′)
d(a∨b′) = d(a′∨b)

d(a)+d(a′) = d(a∨b′).

In turn, these equations yield

d(a)+d(a′) = d(a)+d(b′)−d(a∧b′)
d(b)+d(b′) = d(a′)+d(b)−d(a′∧b).

From these equations we obtain d(a∧b′)+d(a′∧b) = 0. Therefore both
d(a∧ b′) = 0 and d(a′ ∧ b) = 0. Hence a∧ b′ = 0 = a′ ∧ b. Thus both
{a,b′} and {a′,b} are directly join independent sets of cardinality two and
so a⊕b′ = a′⊕b = a⊕a′ as desired.
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vii. According to (v), {b,a′} is directly join independent and d(b) < d(a) since
b < a. So

d(b⊕a′) = d(b)+d(a′)
< d(a)+d(a′)
= d(a⊕a′)

Thus b⊕a′ ≤ a⊕a′ and b⊕a′ 6= a⊕a′.

viii. Just notice that a∧b = a∧b∧b≤ a∧(a′∨b)∧b = 0. (Here the hypothesis
that b≤ a⊕a′ is unnecessary.)

ix. Since d(a) = d(a)+d(b), we conclude that d(b) = 0 and so b = 0.

x. It suffices to prove that when a⊕b is directly join isotopic to c in one step.
So pick d with a⊕b 6= d 6= c so that

(a⊕b)⊕d = c⊕d.

Thus, I[0,a∨ b] and I[0,c] are projective, and the isotopy map that takes
x∈ I[0,a∨b] to (x∨d)∧c is a lattice isomorphism by the Dedekind Trans-
position Principle. Now let a′ = (a∨d)∧c and b′ = (b∨d)∧c. a′∧b′ = 0,
since a∧ b = 0, and a′ ∨ b′ = c, since a∨ b = a∨ b, by the isomorphism.
Hence a′ ⊕ b′ = c. To see that a and a′ are directly join isotopic, just
observe:

a′⊕d = a′∨d

= ((a∨d)∧ c)∨d

= (a∨d)∧ (c∨d) by modularity
= (a∨d)∧ (c⊕d)
= (a∨d)∧ ((a∨b)⊕d)
= (a∨d)∧ (a∨b∨d)
= a∨d

= a⊕d.

�

The properties attributed to IND(L) and to the partial operation of direct join
by the first four parts of Theorem 2.46 make the direct join easy to manipulate.
For example, they entail that direct join is associative in a strong sense. Paren-
theses can be rearranged without the worry of whether the operations are defined
(a concern when dealing with partial operations). 0’s can be inserted and deleted
without trouble. Also note that direct join is commutative, as a consequence of
the definition itself. In the proofs below, we have mostly neglected to point out
such uses of Theorem 2.46. The reader should note that a⊕ a is only defined
when a = 0.

The next lemma is the key to our proof of the Direct Join Decomposition
Theorem. This lemma is taken from Jónsson [].



2.4 Modular Lattices wit the Finite Chain Condition 65

LEMMA. Let L be a modular lattice of finite height and let a,a′,b,b′,d ∈ L
such that

a⊕a′⊕d = b⊕b′⊕d

Then there are c and c′ with c≤ b and c′ ≤ b′ such that

a⊕a′⊕d = c⊕ c′⊕a′⊕d.

Proof. Let e = a⊕ a′ ⊕ d = b⊕ b′ ⊕ d. We view the lemma as an assertion
about 6-tuples (e,d,a,a′,b,b′ of elements of L. The following three cases are
exhaustive and mutually exclusive:

i. e = a∨b′∨d = a′∨b∨d.

ii. a∨b′∨d < e.

iii. a∨b′∨d = e but a′∨b∨d < e.

CASE I: e = a∨b′∨d = a′∨b∨d.
In view of Theorem 2.46 (vi) (and with the help of parts (i), (ii), (iii) as well),

the lemma is false. A counterexample to the lemma is a 6-tuple (e,d,a,a′,b,b′)
such that

e = a⊕a′⊕d and e = b⊕b′⊕d,

but no choice of c and c′ will fulfill the lemma. Since L is finite dimensional,
it has the finite chain condition (Theorem 2.42), so every nonempty subset of
L has both minimal and maximal members (Theorem 2.6). Fix e so that it is
minimal among all first entries of counterexamples. Next, fix d so that it is
maximal among all second entries of counterexamples with first entry e. Of
course, there may exist 6-tuples with first entry e and second entry d that are
not counterexamples. In fact, we have already observed that 6-tuples falling into
Case I cannot be counterexamples. We will prove the lemma by showing that the
same applies to the remaining cases.
CASE II: a∨b′∨d < e.

Let e1 = a∨b′∨d. So e1 < e; this means that e1 is not the first entry of any
counterexample. Let

a1 = a a′1 = a′∧ e1

b1 = b∧ e1 b′1 = b′.

By Theorem 2.46(v), {a1,a′1,d} and {b1,b′1,d} are both directly join indepen-
dent. Moreover, modularity yields

a1∨a′1∨d = a∨ (a′∧ e1)∨d = (a∨d)∨ (a′∧ e1)
= (a∨d∨a′)∧ e1 = e∧ e1 = e1.

b1∨b′1∨d = (b∧ e1)∨ (b′∨d) = (b′∨d)∨ (b∧ e1)
= (b∨d∨b′)∧ e1 = e∧ e1 = e1.
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Thus, (e1,d,a1,a′1,b1,b′1) is a 6-tuple fulfilling the hypotheses of the lemma. It is
not a counter example. So pick c≤ b1 and c′ ≤ b′1 such that e1 = c⊕c′⊕a′1⊕d.

Now c∨ c′ ∨ a′ ∨ d = c∨ c′ ∨ a′1 ∨ a′ ∨ d = e1 ∨ a′ = a∨ b′ ∨ d ∨ a′ = e. All
that remains for Case II is to show that {c,c′,a′,d} is directly join independent.
But observe that by Theorem 2.46 (iv),

{a′1,c⊕ c′⊕d} is directly join independent

and
{a⊕d,a′} is directly join independent.

Another way to write the first of these two sets is{
a∧ (a∨b′∨d),c⊕ c′⊕d

}
.

With the help of Theorem 2.46 (v), we deduce that{
a′∧

(
(a∨d)∨ (c⊕ c′⊕d)

)
,c⊕ c′⊕d

}
is directly join independent.

Now, Theorem 2.46 (viii) entails that

{a′,c⊕ c′⊕d} is directly join independent,

since c⊕ c′⊕d ≤ e1 < e = a′⊕ (a∨d). By Theorem 2.46 (i) and (iii), we con-
clude that {c,c′,a′,d} is directly join independent, as desired. So no 6-tuple
beginning with e that falls into Case II is a counterexample to the lemma. More-
over, in Case II, for our fixed e, we can conclude that

c < b

for otherwise c = b, and since c ≤ b1 < b, we obtain b = b1 = b∧ e1. In turn,
this implies that b≤ e1 and so e1 = e1∨b = a∨b′∨d∨b = e, contradicting that
e1 < e. Case II is settled.

The following claim, which is easily established using modularity and Theo-
rem 2.46 (v), is used several times in Case III and also in the proof of the Direct
Join Decomposition Theorem.
CLAIM: Let x,y,z ∈ L and define x] to be x∧ z. If y≤ x≤ y⊕ z, then x = x]⊕ y.

�

CASE III: a∨b′∨d = e but a′∨b∨d < e.
Interchanging a with b and a′ with b′, we obtain the 6-tuple (e,d,b,b′,a,a′)

for our fixed e and d. This 6-tuple fails falls into Case II. Since we have already
verified Case II, we pick c1 < a and c′1 ≤ a′ so that

e = c1⊕ c′1⊕b′⊕d.

By Theorem 2.46 (iv), {c′1,c1⊕ b⊕ d} is directly join independent. Now we
invoke the claim, with a′ as x, c′1 as y, c1⊕b′⊕d as z, and a] = a′∧ (c1∨b′∨d).
Hence a′ = a]⊕ c′1. Further, we have

e = a⊕a]⊕ (c′1⊕d)
e = c1⊕b′⊕ (c′1⊕d) (?)
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according to Theorem 2.46 (iii) and (iv).
SUBCASE IIIA: 0 < c′1.

In this subcase, Theorem 2.46 (vii) yields d < c′1⊕d. Thus the lemma holds
at the 6-tuple (e,c′1⊕d,a,a],c1,b′), in view of (?). So pick c2 ≤ c1 and c′2 ≤ b′

so that
e = c2⊕ c′2⊕a]⊕ (c′1⊕d).

Observe that

e = c2⊕ c′2⊕ (a]⊕ c′1)⊕d

= c2⊕ c′2⊕a′⊕d

e = c2⊕a′⊕ (c′2⊕d). (??)

We apply the claim again, this time taking b′ as x, c′2 as y, and c2⊕ a′⊕ d as z.
Thus for b] = b′∧ (c2∨a′∨d), the claim gives us

b′ = b]⊕ c′2.

Hence
e = b⊕b]⊕ (c′2⊕d). (???)

But c′2 > 0, for otherwise e = c2⊕ a′⊕ d < a⊕ a′⊕ d = e, where the strict in-
equality comes from c2 ≤ c1 < a (by Theorem 2.46 (vii)). Hence d < c′2⊕ d,
again by Theorem 2.46 (vii). In view of (??( and (???), the 6-tuple

(e,c′2⊕d,c2,a′,b,b])

fulfills the hypotheses of the lemma. Since d < c′2⊕ d, the lemma holds at this
6-tuple. So pick c3 ≤ b and c′3 ≤ b] so that

e = c3⊕ c′3⊕a′⊕ (c′2⊕d).

Note that by Theorem 2.46 (iii) and (iv), we have

e = c3⊕ (c′3⊕ c′2)⊕a′⊕d.

Since c3 ≤ b and c′3⊕ c′2 ≤ b]∨b′ ≤ b′∨b′ = b′, this subcase is settled.
SUBCASE IIIB: c′1 = 0.

In this case, we have that c1 < a and

e = a⊕a′⊕d and
e = b′⊕ c2⊕d.

In the event that a∨ c2 ∨ d = e, w get e = a∨ d. So Theorem 2.46 (v) and (vii)
yield a′ = 0. Then choosing c = b and c′ = b′ demonstrates the lemma. For hte
remainder of cases, we take a∨ c2 ∨ d < e. Thus the 6-tuple (e,d,a,a′,b′,c1)
falls into Case II. So pick c2 ≤ c1 and c′2 ≤ b′ such that

e = c2⊕a′⊕ (c′2⊕d). (??)

Now the same reasoning, word for word, used to complete Subcase IIIA, from
the point labeled (??) in that case, can be used to complete this subcase. �
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THEOREM 2.47 (The Direct Join Decomposition Theorem). Let L be a mod-
ular lattice of finite height. Every element of L is the join of a finite directly
join independent set of directly join irreducible elements. If M and N are finite
directly join independent sets of directly join irreducible elements of L such that∨

M and
∨

N are directly join isotopic, then there is a one-to-one function f from
M onto N such that x is directly join isotopic with f (x) for each x ∈M.

Proof. There are two parts to the theorem: the existence of direct join decom-
positions and their uniqueness up to direct join isotopy. The existence follows
by an easy induction on the dimension of elements. We omit the details except
to say that Theorem 2.46 (ix) has a role to play. The uniqueness is established
by induction on the smaller of |M| and |N|. Without loss of generality, suppose
|N| ≤ |M|.
INITIAL STEP: |N|= 0.

In this case, N is empty, so
∨

N = 0. It follows from the definition of direct
join isotopy and Theorem 2.46 (ix) that

∨
M = 0. Thus M is empty, as desired,

or M = {0}. The last alternative is excluded because 0 is not directly join irre-
ducible.
INDUCTIVE STEP:

M is nonempty, since |N| ≤ |M| and N is nonempty. It follows from Theo-
rem 2.46 (ix) that only 0 can be directly join isotopic to 0. From this and the
obvious inductive extension of Theorem 2.46 (x) to arbitrary finite direct joins,
pick g to be a one-to-one function from M into I [0,

∨
N] such that x is directly

join isotopic with g(x) for all x ∈M, and
∨
{g(x) : x ∈M}=

∨
N.

Pick a ∈ {g(x) : x ∈M} and b′ ∈ N. Let a′ =
∨

({g(x) : x ∈M}−{a}) and
b =

∨
(N−{b′}).

Thus a⊕ a′ = b⊕ b′. Letting d = 0 in the lemma, pick c and c′ such that
a⊕ a′ = c⊕ c′ ⊕ a′, c ≤ b, and c′ ≤ b′. Hence a and c⊕ c′ are directly join
isotopic. From Theorem 2.46 (ix) and (x), it follows that any element directly
join isotopic to a directly join irreducible element must itself be directly join
irreducible. Now, c⊕ c′ is directly join isotopic to an element of M (by way of
a), so c⊕ c′ is directly join irreducible. Thus either c = 0 or c′ = 0>
CASE I: c = 0 and a is directly join isotopic with c′.

Using c′ ≤ b′ ≤ c′⊕a′, pick c] so that b′ = c′⊕ c]. (This can be done using
the claim that was isolated during the proof of the lemma.) Since b′ is directly
join irreducible and c′ 6= 0, it follows that b′ = c′. Therefore

a⊕a′ = b⊕b′ = c⊕ c′⊕a′ = b′⊕a′.

In particular,
b⊕b′ ≈ a′⊕b′

and so a′ and b are directly join isotopic. But

a′ =
∨

({g(x) : x ∈M}−{a})

b =
∨

(N−{b}) .

According to the induction hypothesis, pick a one-to-one function h′ from {g(x) : x ∈M}−
{a} onto N − {b′} such that y is directly join isotopic with h′(y) for all y ∈
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{g(x) : x ∈M}−{a}. Extend h′ to a function h : {g(x) : x ∈M} → N by setting
h(a) = b′. Then h◦g is a one-to-one function from M onto N such that h(g(x))
is directly join isotopic with x for all x ∈M.
CASE II: c′ = 0 and a is directly join isotopic with c.

Again using the claim established in the proof of the lemma and c ≤ b ≤
c⊕ a′, pick c] with b = c⊕ c]. By the existence part of this theorem, let C be a
finite directly join independent set of directly join irreducible elements such that
c] =

∨
C. So ∨

(C∪{c}) = b =
∨(

N−{b′}
)
.

By the induction hypothesis, let h′ be a one-to-one function from C∪{c} onto
N−{b′} such that h′(y) is directly join isotopic with y for all y∈C∪{c}. Extend
h′ to h : C∪{c}∪{b′}→ N by setting h(b′) = b′. Now

c⊕ c]⊕b′ = b⊕b′ = c⊕ c′⊕a = c⊕a′

and in particular c]⊕b′ is directly join isotopic with a′. But

c]⊕b′ =
∨(

C∪{b′}
)

and

a′ =
∨

({g(x) : x ∈M}−{a}) .

The induction hypothesis supplies a one-to-one map f ′ from {g(x) : x∈M}−{a}
onto C∪{b′} such that y and f ′(y) are directly join isotopic, for all y ∈ {g(x) :
x ∈M}−{a}. Extend f ′ to f from {g(x) : x ∈M} onto C∪{b′}∪{c} by setting
f (a) = c. The desired one-to-one function from M onto N is h◦ f ◦g.

�

Ore’s formulation of a direct join decomposition theorem for modular lattices of
finite height can now be drawn as a corollary.

COROLLARY 2.48. (Ore [1935], [1936].) Let L be a modular lattice of finite
height. Every element of L is the join of a finite directly join independent set of
directly join irreducible elements. If M and N are finite directly join independent
sets of directly join irreducible elements such that

∨
M and

∨
N, then there is a

one-to-one function from M onto N such that I[0,x] and I[0, f (x)] are projective
for all x ∈M.

Exercises 2.49

1. a. Prove that every element of a relatively complemented lattice of finite
height is the join of finitely many atoms.

b. Prove htat if L is a bounded modular lattice and 1 is the join of
finitely many atoms, then every element of L is the join of finitely
many atoms.

2. Prove Theorem 2.39– i.e., prove that the height function is a dimension
function.
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3. The idea of this exercise is to reprove Theorem 2.37, following the lines of
hte Zassenhaus-Schreier approach to the Jordan-Hölder Theorem of group
theory. Thus, we need an analog of the Zassnehaus “Butterfly” Lemma
and of the Schreier Refinement Theorem. Let L be a modular lattice Re-
call from the proof of Theorem 2.37 that two chains a0 < a1 < · · ·< an−1
and b0 < b1 < · · ·< bm−1 are equivalent provided that n = m and the inter-
vals I[ai,ai+1] and I[b j,b j+1] can be matched in such a way that matching
intervals are projective. Finally, we say that the chain C′ is a refinement
of the chain C in L iff C ⊆C′.

a. Suppose that a0≤ a1 and b0≤ b1 in L. Prove that I [a0∨ (a1∧b0),a0∨ (a1∧b1)]
and I [b0∨ (b1∧a0),b0∨ (b1∧a1)] are projective intervals. [Picto-
rial hint: Draw a diagram of a lattice meeting all the requirements of
this statement. There should be some resemblance to a butterfly in
this diagram.]

b. Let a≤ b in L. Using (a), prove that any two chains from a to b in L
have equivalent refinements.

c. Deduce Theorem 2.37 from (a) and (b).

4. Prove that if L is a semimodular lattice of finite height, then any two max-
imal chains in L have the same length (i.e., Theorem 2.37 can be estab-
lished, in part, for semimodular lattices).

5. Let L be a semimodular lattice with a least element 0. Let a and b be atoms
of L and c ∈ L. Prove that if c < a∨ c≤ b∨ c, then a∨ c = b∨ c.

6. Let L be a modular lattice with least element 0 and M be any set of el-
ements of L−{0}. Prove that M is directly join independent iff (

∨
N)∧

(
∨

P) =
∨

(N∩P), for all finite N,P⊆M.

7. Let L be a modular lattice with least element 0 and let a0,a1, . . . ,an be
n + 1 distinct elements of L−{0}. Prove that {a0,a1, . . . ,an} is directly
join independent iff

(a0∨a1∨·· ·∨ai)∧ai+1 = 0

for all i < n.

8. Let L be the congruence lattice of the three-dimensional vector space over
the real numbers. Describe the directly join independent subsets of L and
the directly join irreducible elements of L. Do the same for the four-
dimensional vector spaces over the real numbers.

*9. In this exercise, we sketch an alternative approach to Corollary 2.48 that
essentially follows Ore’s original path to the result. Let L be a modular
lattice of finite height and suppose that

a0⊕a1⊕·· ·⊕an−1 = a.
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For each i < n, let āi = a0∨·· ·∨ai−1∨ai+1∨·· ·∨an−1.

a. Prove that {āi : i < n} is a direclty meet independent set with n ele-
ments and that 0 is the meet of this set, if a = 1.

b. Let b ∈ L. Prove
∨

((b∨ āi)∧ai) = (
∨

(b∨ āi))∧ (
∨

ai). Now sup-
pose further that a = b0⊕·· ·⊕bm−1 and that all the ai’s and b j’s are
directly join irreducible. The definition of the b̄ j is similar to that for
āi. The goal is to prove that m = n and that there is a permutation f
of {0,1, . . . ,n−1} such that

a = ai⊕ b̄ f (i) = b f (0)⊕·· ·⊕b f (i)⊕ai+1 · · ·⊕an−1

for all i < n. This is accomplished by induction on the dimension
d(a) fo the element a. Check the initial step and then do the next
steps to esbalish the inductive step of the arugment.

c. Fix i < n. Prove that there is k < m such that ai∨ b̄k < a, then there
is j 6= k such that

a = b j⊕ āi = ai⊕ b̄ j.

[Here is a hint: For each r < m, define cr = (ai∨ b̄r)∧br. Argue that
the cr’s are directly join independent and let their direct join be e.
Note that e = ai⊕ (e∧ āi), as in the claim used in the lemma for the
Direct Join Decomposition Theorem (use (b)). Prove that e < a, and
use the induction hypothesis on the two direct join decompositions
of e. Now, using the dimension function and Theorem 2.46, finish
this part (c).]

d. Now dispense with the hypothesis in (c) that ai∨ b̄k < a for some k.
in view of the interchangeability of the ai’s and b j’s, this amounts
to eliminating the possibility that ai ∨ b̄k = a and bk ∨ āi < a for all
k < m.

e. Now complete the inductive proof of the assertion made before part (c)
above, and deduce it from Corollary 2.48.

10. (R. Freese) Prove that the lattice in Figure 2.11 is modular and that a and
c are directly join isotopic but not in one step.

2.5 Distributive Lattices

Just as modularity emerges as a fundamental property of the congruence lat-
tice of groups and algebras closely connected with groups, it turns out that the
congruence lattice of lattices themselves and of algebras closely connected with
them have a stronger property:

a∧ (b∨ c) = (a∧b)∨ (a∧ c) for all a,b, and c.
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ca

Figure 2.11:

This statement is called the distributive law, and lattices for which it holds are
called distributive lattices. The earliest lattices to be investigated were distribu-
tive lattices; the obvious analog with the distributive law for multiplication and
addition made this statement appealing. Indeed, some early writers in lattice
theory considered all lattices to be distributive. Every chain is easily seen to be
distributive, as is the lattice of all subsets of any given set. It is also clear that
every distributive lattice is modular, so all conclusions of the last two sections
apply to to distributive lattices. We shall see here that most of these results hold
in a much sharper form.

THEOREM 2.50. (Funayama and Nakayama [1942].) The congruence lattice
of any lattice is distributive.

Proof. Let L be a lattice. First observe that (φ ∧ψ)∨ (φ ∧ θ) ≤ φ ∧ (ψ ∨ θ)
holds in Con L, since it holds in every lattice. We will establish the reverse
inclusion. Our argument shares some features of the proof that the congruence
lattice of a group must be modular (Theorem 2.24). Let M(x,y,z) be the lattice
theoretic expression

(x∧ y)∨ (y∧ z)∨ (z∧ x).
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Straightforward lattice arguments show that for all a,b ∈ L

M(a,a,b) = a

M(a,b,a) = a

M(b,a,a) = a.

Now suppose that a(φ ∧ (ψ ∧θ))b, where φ ,ψ,θ ∈ Con L. This means
that aφb and a(ψ ∨θ)b. According to Theorem 1.24 (ii), ψ ∨θ is the smallest
equivalence relation of L that includes both ψ and θ . This equivalence relation
is obviously ψ ∪ψ ◦ θ ∪ψ ◦ θ ◦ψ ∪ψ ◦ θ ◦ψ ◦ θ ∪ ·· · . Thus there must be a
finite sequence c0,c1,c2, . . . ,cn such that a = c0, b = cn, and

ciψci+1 if i is even and i < n

ciθci+1 if i is odd and i < n.

Notice that for all i≤ n, a = M(a,a,ci)φM(a,b,ci). This implies that

M(a,b,ci)(φ ∧ψ)M(a,b,ci+1) if i is even and i < n

M(a,b,ci)(φ ∧θ)M(a,b,ci+1) if i is odd and i < n.

Since a = M(a,b,a) = M(a,b,c0) and b = M(a,b,b) = M(a,b,cn), we conclude
that a((φ ∧ψ)∨ (φ ∧θ))b, as desired. Therefore, Con L is distributive. �

This proof applies to a wider class of algebras than lattices. In fact, it applies
to any algebra for which there is a term M(x,y,z) that can be built up from the
basic operations and variables so that the three equations mentioned in the proof
are satisfied. This line of investigation will be taken up in §4.12 and pursued in
greater depth in our second volume.

Although every distributive lattice is necessarily modular, there are modular
lattices that fail to be distributive. The smallest such lattice is M3, diagramed in
Figure 2.12. In M3 we have a∧b = 0 and a∧ c = 0 but a∧ (b∨ c) = a∧1 = a.

0

a b c

1

Figure 2.12:

There are many statements equivalent to the distributive law. Some are con-
tained in the next theorem, while others can be found in the exercises below. For
the history of this theorem, consult pages 133–134 of Birkhoff [].

THEOREM 2.51. For any lattice L the following statements are equivalent:
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i. L is distributive.

ii. a∧ (b∨ c)≤ (a∧b)∨ (a∧ c) for all a,b,c ∈ L.

iii. a∧ (b∨ c) = (a∧b)∨ (a∧ c) for all a,b,c ∈ L.

iv. (a∧b)∨ (b∧ c)∨ (c∧a) = (a∨b)∧ (b∨ c)∧ (c∨a) for all a,b,c ∈ L.

v. For all a,b,c ∈ L, if a∧ c = b∧ c and a∨ c = b∨ c, then a = b.

vi. L has no sublattice isomorphic with either N5 or M3.

Proof.

i. ⇔ ii. This follows easily, since (a∧b)∨ (a∧ c)≤ a∧ (b∨ c) in all lattices.

i. ⇔ iv. First, assume that L is distributive. Obtain (iv) as follows:

(a∨b)∧ (b∨ c)∧ (c∨a)
= (((a∨b)∧b)∨ ((a∨b)∧ c))∧ (c∨a)
= (b∨ ((a∧ c)∨ (b∧ c)))∧ (c∨a)
= (b∨ (a∧ c))∧ (c∨a)
= (b∧ (c∨a))∨ ((a∧ c)∧ (c∨a))
= ((b∧ c)∨ (b∧a))∨ (a∧ c)
= (a∧b)∨ (b∧ c)∨ (c∧a).

Now assume that (iv) holds. Then L is modular, since if a≤ c, then

(a∨b)∧ c = (a∨b)∧ ((b∨ c)∧ c)
= (a∨b)∧ (b∨ c)∧ (c∨a)
= (a∧b)∨ (b∧ c)∨ (c∧a)
= (a∧b)∨ (b∧ c)∨a

= ((a∧b)∨a)∨ (b∧ c)
= a∨ (b∧ c).

Using the modularity of L, the distributive law can be deduced as follows:

a∧ (b∨ c)
= (a∧ (a∨b))∧ (b∨ c)
= ((a∧ (c∨a))∧ (a∨b))∧ (b∨ c)
= a∧ (a∨b)∧ (b∨ c)∧ (c∨a)
= (a∧ ((a∧b)∨ (b∧ c))∨ (c∧a)) by modularity
= (a∧ (b∧ c))∨ (a∧b)∨ (c∧a) by modularity
= (a∧b)∨ (a∧ c).
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i. ⇔ iii. A direct proof of this is left as an exercise. However, observe that (iii) is
the dual of (i). On the other hand, (iv) is its own dual. Since (i)⇔ (iv), we
know that the class of distributive lattices is selfdual. So (i) and (iii) are
equivalent.

i. ⇒ v. Suppose that a∧ c = b∧ c and a∨ c = b∨ c. Then

a = a∧ (a∨ c) = a∧ (b∨ c)
= (a∧b)∨ (a∧ c)
= (a∧b)∨ (b∧ c)
= b∧ (a∨ c) = b∧ (b∨ c) = b.

v. ⇒ vi. It is easy to find violations of (v) in both N5 and M3. Thus any lattice
satisfying (v) cannot have a sublattice isomorphic to either of these lattices.

vi. ⇒ iv. Since N5 is excluded as a sublattice, we know that L is modular. We argue
the contrapositive. So suppose L fails to satisfy (iv). Since (a∧b)∨ (b∧
c)∨ (c∧a)≤ (a∨b)∧ (b∨c)∧ (c∨a) is true in every lattice, we can pick
elements a,b,c ∈ L such that

(a∧b)∨ (b∧ c)∨ (c∧a) < (a∨b)∧ (b∨ c)∧ (c∨a).

Let d = (a∧ b)∨ (b∧ c)∨ (c∧ a) and u = (a∨ b)∧ (b∨ c)∧ (c∨ a) and
define

a′ = (d∨a)∧u

b′ = (d∨b)∧u

c′ = (d∨ c)∧u.

We contend that Figure 2.13 is a sublattice of L. That is, these five ele-
ments are distinct and

a′∨b′ = b′∨ c′ = c′∨a′ = u

a′∧b′ = b′∧ c′ = c′∧a′ = d.

d

a′ b′ c′

u

Figure 2.13:



76 Chapter 2 Lattices

Actually, verifying these equalities suffices, because they imply that the
five elements are distinct, in view of d < u. Moreover, from modularity
we have

a′ = d∨ (a∧u)
b′ = d∨ (b∧u)
c′ = d∨ (c∧u).

Because of all this symmetry, it suffices to establish, say

a′∧ c′ = d.

Reason as follows:

a′∧ c′

= ((d∨a)∧u)∧ (d∨ c)∧u)
= (d∨a)∧ (d∨ c)∧u

= ((a∧b)∨ (b∧ c)∨ (c∧a)∨a)∧ (d∨ c)∧u

= ((b∧ c)∨a)∧ (a∨ c)∧u

= ((b∧ c)∨a)∧ ((a∧b∨ c)∧u

= ((b∧ c)∨a)∧ ((a∧b)∨ c)∧ (a∨b)∧ (b∨ c)∧ (c∨a)
= ((b∧ c)∨a)∧ ((a∧b)∨ c)
= (b∧ c)∨ (a∧ ((a∧b)∨ c)) by modularity
= (b∧ c)∨ (((a∧b)∨ c)∧a)
= (b∧ c)∨ ((a∧b)∨ (c∧a)) by modularity
= d.

�

The import of this theorem is like that of the analogous Theorem 2.25 con-
cerning modular lattices. Since the class of distributive lattices is specified by
a set of equations, it is a variety. Either (iii) or (iv) above tells us that the dual
of a distributive lattice is again distributive. Part (vi) characterizes the class of
distributive lattices by forbidding certain sublattices, offering some prospect for
using a Hasse diagram to check whether a lattice is distributive.

Let L be a lattice, a ∈ L, and recall the maps φa(x) = a∧x and ψa(x) = a∨x.
Notice that φa : L→ I(a] and ψa : L→ I[a). These maps are always isotone, but
even in the modular lattice M3 they fail to be a homomorphism. In distributive
lattices, the situation is nicer.

THEOREM 2.52. The following statements are equivalent for any lattice L:

i. L is distributive.

ii. For any a ∈ L, both φa and ψa are homomorphisms.
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In modular lattices, projective intervals are isomorphic by a composition of
a sequence of such maps associated to a sequence of transposed intervals. In
general, these sequences can be arbitrarily long, with no way to shorten them. In
distributive lattices, the situation is nicer.

THEOREM 2.53. Let L be a distributive lattice. If I[a,b] and I[c,d] are pro-
jective in L, then either these two intervals are transposes or there are intervals
I[u,v] and I[u′,v′] such that

I[a,b]↗ I[u,v]↘ I[c,d]

and

I[a,b]↘ I[u′,v′]↗ I[c,d].

Proof. First, observe that in any lattice, if I[a0,b0] transposes up to I[a1,b1],
which transposes up to I[a2,b2], then I[a0,b0] transposes up to I[a2,b2] and that
a similar phenomenon happens for transposing down. The conclusion of the
theorem will follow if we can show how to “reverse the kinks” in a chain of per-
spectivity maps. More precisely, we want to show that if I[a0,b0]↗ I[a1,b1]↘
I[a2,b2], then there are a3 and b3 such that I[a0,b0]↘ I[a3,b3]↗ I[a2,b2]. Just
define

a3 = a0∧a2

and

b3 = b0∧b2

From symmetry considerations, it is enough to demonstrate that

a0∧b3 = a3

and

a0∨b3 = b0.

From the first equation, we have:

a0∧b3 = a0∧b0∧b2

= a0∧b2

= b0∧a1∧b2

= b0∧a2

= a0∧b2∧b0∧a2

= a0∧a2

= a3.
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For the second equation, we have:

a0∨b3 = a0∨ (b0∧b2)
= b0∧ (a0∨b2) by modularity
= b0∧ ((b0∧a1)∨b2)
= (b0∧a1)∨ (b0∧b2) by modularity
= b0∧ (a1∨b2) by distributivity
= b0∧b1

= b0.

�

Another useful property that holds for distributive lattices but not for modular
lattices in general is presented in the next lemma. Recall the notions of join prime
and meet prime from Definition 2.4.

LEMMA 2.54. In any distributive lattice, an element is join irreducible iff it is
join prime; it is meet irreducible iff it is meet prime.

Proof. We concern ourselves only with the “join” aspects of the theorem. The
“meet” statement will follow, since the class of distributive lattices is selfdual.
In any lattice, join prime elements are always join irreducible. So let a be a
join irreducible element in the distributive lattice L. To see that a is join prime,
suppose that a ≤ b∨ c. So a = a∧ (b∨ c) = (a∧ b)∨ (a∧ c), by distributivity.
Because a is join irreducible, either a = a∧ b or a = a∧ c. Hence, either a ≤ b
or a≤ c. �

THEOREM 2.55. Let L be a distributive lattice and let N,M ⊆ L where both N
and M are finite join irredundant sets of join irreducible elements. If

∨
N =

∨
M,

then N = M.

Proof. Let a ∈ N. Then a is join irreducible, and so, by Lemma 2.54, a is join
prime. Now a ≤

∨
N =

∨
M. Hence we can pick b ∈ M with a ≤ b, since a is

join prime. Likewise, we can pick c ∈ N such that b≤ c. Therefore a≤ c. Since
N is join irredundant, we obtain a = c. Hence, a = b∈M. Consequently, N ⊆M.
The reverse inclusion is obtained by a similar argument. �

THEOREM 2.56. Let L be a distributive lattice with the descending chain con-
dition. For every element a ∈ L, there is a unique join irredundant finite set N of
join irreducible elements such that a =

∨
N.

Proof. The existence of the set N is guaranteed by Theorem 2.7, and uniqueness
is just a restatement of Theorem 2.55. �

Theorem 2.56 has a much stronger conclusion than the Kurosh-Ore Theo-
rem (2.33), which holds more generally for all modular lattices. This simple
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result has some use in algebraic geometry, and we will use it in the investigation
of subdirect representations of algebras with distributive congruence lattices.

As shown by M3, elements of modular lattices can have several comple-
ments. This cannot happen in distributive lattices. In view of Theorem 2.51(v),
an element of a distributive lattice can have at most one complement relative
to any bounded interval. Thus complements and relative complements in dis-
tributive lattices are unique whenever they exist. According to Dilworth [], there
are nonmodular lattices in which every element has a unique complement. The
construction is very elaborate and is not included here. On the other hand, ev-
ery lattice in which relative complements are unique must be distributive, by
Theorem 2.51. See Exercise 2.63(7) regarding uniquely complemented modu-
lar lattices. The complemented elements in a distributive lattice can be used to
decompose the lattice.

THEOREM 2.57. Let L be a bounded distributive lattice and let a,a∗ ∈ L where
a and a∗ are complements of each other. L∼= I(a]× I[a).

Proof. Define f : L→ I(a]× I[a) by f (x) = (x∧ a,x∨ a) for all x ∈ L. This f
is the desired isomorphism. Given distributivity, the demonstration that f is a
homomorphism presents no difficulty, so we omit it. To see that f is one-to-one,
suppose f (c) = f (b). This means that c∧a = b∧a and c∨a = b∨a. But then,
by Theorem 2.51 (v), c = b. Finally, f is onto I(a]× I[a): suppose c ≤ a ≤ b.
Just observe that

((b∧a∗)∨ c)∨a = b

and

((b∧a∗)∨ c)∧a = c.

So f ((b∧a∗)∨ c) = (c,b). �

The converse of this theorem holds in the following sense. Suppose that
L = L0×L1 where L0 and L1 are bounded lattices. Then the elements 〈1,0〉
and 〈0,1〉 are complements of each other in L and L0 ∼= I(〈1,0〉] while L1 ∼=
I[〈1,0〉). Distributivity plays no role here. Even in the proof of the theorem,
the full power of distributivity is not needed to obtain the decomposition of L
into the direct product of other lattices. Later we will see how to decompose
relatively complemented lattices of finite length.

A complemented distributive lattice is called a Boolean lattice. In Chapter 1,
we defined Boolean algebras in such a way that complementation was a basic
unary operation. Thus the relation between Boolean lattices and Boolean alge-
bras is like that between groups treated as algebras with one operation–the group
multiplication–and groups as we have introduced them in Chapter 1. Homomor-
phic images of Boolean lattices are again Boolean lattices and direct products of
systems of Boolean lattices are also Boolean lattices. However, subalgebras of
Boolean lattices are not generally Boolean lattices. For example, the only chains
that are Boolean are those with one or two elements, but long chains are quite
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common in most Boolean lattices. Theorem 2.57 can obviously be applied to
finite Boolean lattices to obtain the following result:

COROLLARY 2.58. Every finite Boolean lattice is isomorphic to a direct power
of the two-element chain.

Another way to formulate this corollary is the following: Every finite Boolean
lattice is isomorphic to the lattice of all subsets of some set, where the join of the
two subsets is just their union and the meet of two subsets is just their intersec-
tion.

This reformulation of the corollary is a simple consequence of the connection
between sets and characteristic functions. Indeed, the members of the kth direct
power of the two-element chain with elements 0 and 1 can be regarded as the
characteristic functions defined on a k-element set. The correlation of subsets
with their characteristic functions is an isomorphism from the lattice of subsets
onto the direct power.

Neither the corollary nor its reformulation hold for arbitrary finite distributive
lattices or for arbitrary infinite Boolean lattices in place of finite Boolean lattices.
But it is possible to accommodate these lattices by giving up only a little of
the power of the conclusion. It turns out that every finite distributive lattice is
isomorphic, in a rather special way, to a sublattice of a direct power of the two-
element chain (or, in the language of the reformulation, to a sublattice of the
lattice of all subsets of some set, consisting of certain kinds of subsets.)

Let J = 〈J,≤〉 be any ordered set. An order ideal of J is just a subset of J
that is closed downward. That is, I ⊆ J is an order ideal of J iff for all a and b in
J, if a ∈ I and b ≤ a, then b ∈ I. Let L be a lattice and let J(L) be the set of all
nonzero join irreducible elements of L. The ordered set obtained by restricting
the ordering of L to J(L) is denoted by J(L), and the set of order ideals of J(L)
is denoted by Ord J(L). Evidently, 〈Ord J(L),∩,∪〉 is a distributive lattice.
Ord J(L) will denote this lattice. Also let Iso(J∂ ,C2) stand for the set of all
isotone maps from the ordered set J∂ into the two element chain C2. (Recall that
the superscript ∂ indicates the operation of forming the dual of an ordered set.)
Evidently Iso(J∂ ,C2) is a sublattice of the direct power of CJ

2 of the two-element
chain. The connection between Ord J(L) and Iso(J∂ ,C2), where J = J(L),
is that the characteristic functions on the order ideals are exactly those isotone
maps, and this correlation establishes an isomorphism.

The next theorem is due to Birkhoff [].

THEOREM 2.59 (The Representation Theorem for Finite Distributive Lattices).
Let L be a finite distributive lattice and let J be the ordered set of nonzero join
irreducible elements of L. Then L∼=Ord J(L)∼=Iso(J∂ ,C2). Moreover, each
projection function on CJ

2 maps Iso(J∂ ,C2) onto C2.

Proof. Our proof focuses on isotone maps rather than order ideals, so that the
last sentence of the theorem can be easily handled. In view of the remarks pre-
ceding the theorem, the whole proof could be reformulated in terms of order
ideals.
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For each a ∈ L, define fa : J→ {0,1} by fa(b) = 1 if b≤ a and fa(b) = 0 if
b 6≤ a for all b ∈ J. For each a ∈ L, fa is easily seen to be isotone from J∂ into
C2. Define F : L→ Iso(J∂ ,C2) by

F(a) = fa for all a ∈ L.

CLAIM 0: F is a homomorphism.
Let a,b ∈ L and c ∈ J. Notice

c≤ a∨b iff c≤ a or c≤ b,

because c is join prime, and

c≤ a∧b iff c≤ a and c≤ b.

With the help of these two observations, it is straightforward to argue that F is a
homomorphism.
CLAIM 1: F is one-to-one.

Suppose fa = fb. Then the set of join irreducibles below a is the same as the
set of join irreducibles below b. Since every element of a finite lattice is the join
of the set of join irreducibles below it, we conclude that a = b.
CLAIM 2: F is onto Iso(J∂ ,C2).

Let h : J→ {0,1} be isotone (for J∂ !). So H is order reversing for the order
≤ on L. Let a =

∨
{c : h(c) = 1}. To see that h = fa, observe that for d ∈ J,

d ≤ a iff h(d) = 1, because d is join prime and h is order reversing.
CLAIM 3: Let a ∈ J and let ρa be the associated projection function. Then ρa
maps Iso(J∂ ,C2) onto C2.

Notice that, for b∈ L, ρa(h) = ρa( fb) = fb(a) = 1 or 0, depending on whether
a≤ b. Since a > 0, we conclude that ρa( fa) = 1 while ρa( f0) = 0. Hence ρa is
onto C2. �

The last sentence of the theorem is an assertion that the given embedding of
L into the direct power of the two-element chain links L closely to each factor
of the power. In the language to be introduced in Chapter 4, this sentence asserts
that every finite distributive lattice is a subdirect power of the two-element chain.

Next, we extend this result to infinite distributive lattices. Let L be a lattice
and I be an ideal of L. I is said to be a prime ideal provided a∧ b ∈ I implies
a ∈ I or b ∈ I for all a,b ∈ L. This is equivalent to saying that I is a meet prime
element of Idl L. In the proof above (join) primeness played a crucial role. We
will replace it with primeness of ideals. In place of the fact that every element in
a finite distributive lattice is the join of join irreducible elements, we will need
to know that in any distributive lattice, every ideal is the intersection of prime
ideals.

What we need is gathered in the next theorem, due to M. H. Stone [] and
A. Tarski [].

THEOREM 2.60. [The Prime Ideal Theorem for Distributive Lattices] Let L
be a distributive lattice.
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i. If I is an ideal of L and F is a filter of L such that I and F are disjoint,
then there is a prime ideal J of L such that I ⊆ J with J disjoint from F.

ii. Every ideal of L is the intersection of the prime ideals that include it.

Proof. To prove (i), we let H be the collection of ideals containing I but disjoint
from F . By Zorn’s Lemma, pick a maximal member J of H. We need to demon-
strate that J is prime. For the sake of obtaining a contradiction, suppose not. Pick
a,b ∈ L such that a∧b ∈ J but neither a nor b belongs to J. By the maximality
of J, (J∨ I(a])∩F and (J∨ I(b])∩F are both nonempty. So pick c,d ∈ J such
that a∨ c and b∨d belong to F . Since F is a filter, (a∨ c)∧ (b∨d) ∈ F . By dis-
tributivity, (a∨c)∧ (b∨d) = (a∧b)∨ (a∧d)∨ (c∧b)∨ (c∧d), so this element
belongs to J as well. This contradicts that J and F are disjoint.

To prove (ii), we let I be any ideal of L. If I = L, there is little to prove. So
we suppose that I is a proper deal. According to (i), for each a 6∈ I, there is a
prime ideal Ja such that I ⊆ Ja and a 6∈ Ja. Clearly, I is the intersection of all
these prime ideals. �

Let L be a distributive lattice and P(L) be the set of all proper prime ideals
of L. P(L) is ordered by set inclusion, so let P(L) denote this ordered set. The
collection of all order ideals of P(L) is evidently a distributive lattice, with set
union taken for the join and set intersection taken for the meet. Call this lattice
Ord P(L). (Notice that the elements of Ord P(L) are collections of prime ideals
of L.) Once more, the connection between order ideals and their characteristic
functions yields Ord P(L)∼= Iso(P∂ ,C2), where P is taken as P(L). This means
that the theorem below, due to G. Birkhoff [] and M.H.Stone [], can be refor-
mulated to give a representation of any distributive lattice L by sets under the
operations of intersection and union.

THEOREM 2.61. [The Representation Theorem for Distributive Lattices] Let
L be any distributive lattice and let P be the set of all proper prime ideals of L
ordered by set inclusion. L can embed into Iso(P∂ ,C2) in such a way that the
projection functions, restricted to the image of L, are onto C2.

Proof. For each a ∈ L, define fa : P→{0,1} by fa(I) = 0 iff a ∈ I. It is easy to
check that fa ∈ Iso(P∂ ,C2) by F(a) = fa for all a ∈ L.
CLAIM 0: F is a homomorphism.

Let I be a prime ideal and a,b ∈ L. Observe that

a∨b ∈ I iff a ∈ I and b ∈ I

and, because I is prime,

a∧b ∈ I iff a ∈ I or b ∈ I.

These two observations lead immediately to the conclusion that F is a homomor-
phism.
CLAIM 1: F is one-to-one.
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Suppose F(a) = F(b). So fa(I) = fb(I) for all proper prime ideals I. This
means that a and b belong to exactly the same prime ideals. By the Prime Ideal
Theorem (ii), I(a] = I(b]. Therefore a = b, and so F is one-to-one.
CLAIM 2: Let I belong to P and let ρI be the associated projective function.
Then ρI ◦F maps L onto C2.

Just note that (ρI ◦F)(a) = ρI (F(a)) = ρI( fa) = fa(I) = 0 or 1, depending
on whether a belongs to I or not. �

As with the finite case, we also obtain the result that every distributive lattice
is a subdirect power of the two-element chain. The line of reasoning yielding
the Representation Theorem for Distributive Lattices can be easily modified for
Boolean algebras, yielding the following theorem due to M. H. Stone [].

THEOREM 2.62 (The Representation Theorem for Boolean Algebras). Ev-
ery finite Boolean algebra is isomorphic to a direct power of the two-element
Boolean algebra. Every Boolean algebra is embeddable into a direct power of
the two-element Boolean algebra in such a way that each projection function of
the direct power maps the images of the Boolean algebra onto the two-element
boolean algebra.

Of course, another version of this theorem is the statement that every Boolean
algebra is isomorphic to a Boolean algebra composed of subsets of a set with the
operations of set intersection, set union, and set complementation.

The story of representation of distributive lattices and of Boolean algebras
does not end here. In fact, underlying these representation theorems are more
powerful results. Notice that, in the proofs above, each distributive lattice was
correlated, in a natural way, with an ordered set. (For finite distributive lattices,
this set was the set of all nonzero join irreducible elements, whereas for infi-
nite distributive lattices, this was the collection of all proper prime ideals.) In
turn, each ordered set was correlated with a distributive lattice–its lattice of or-
der ideals. Unfortunately, for infinite distributive lattices L, we obtain only the
conclusion that L can be embedded into Ord P(L). In general, P(L) will not de-
termine L up to isomorphism. But it turns out that P(L) can be given a topology,
and the resulting topological ordered set does determine L up to isomorphism.
Indeed, not only will there be a natural one-to-one correlation of distributive
lattices with certain kinds of ordered topological spaces, but, roughly speaking,
this correlation matches lattice homomorphisms with continuous maps (in the
reverse direction), lattice ideals with open subsets, and lattice filters with closed
subsets. The reader may well imagine that many results about distributive lat-
tices and Boolean algebras can now be deduced using the concrete setting of sets.
The deeper correlation with topological ordered sets allows topological tools to
be brought to bear on lattice-theoretic problems. These correlations, known as
the Stone and Priestley dualities, are taken up in a later volume.

Exercises 2.63

1. Let L be the lattice of natural numbers with the meet of the two numbers
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taken to be their greatest common divisor and their join taken to be their
least common multiple. Prove that L is a distributive lattice.

2. Prove that the complemented elements of any distributive lattice comprise
a subuniverse of that lattice.

3. Prove that in any distributive lattice with a 0, direct join isotopy coincides
with equality and that a set is directly join independent iff every pair of
distinct elements of it meet to 0. Finally, prove that a finite directly join
independent set of which 0 is not a member must be join irredundant.
Thus the Direct Join Decomposition Theorem for distributive lattices is a
corollary of Theorem 2.55.

4. a. Let L be a finite distributive lattice and let J(L) be the set of join
irreducible elements of L. Prove that the length of any maximal chain
in L is |J(L)|.

b. Prove that in any finite distributive lattice, the number of join irre-
ducible elements and the number of meet irreducible elements is the
same.

5. (Nachbin []) Let L be a distributive lattice. Prove that L is relatively com-
plemented iff every proper prime ideal of L is a maximal ideal. [Hint: The
Prime Ideal Theorem is useful in establishing both implications.]

*6. Prove that every finitely generated distributive lattice is finite.

7. Prove that every uniquely complemented modular lattice is distributive.
[Hint: Pick x,y,z ∈ L such that x∧ z = y∧ z and x∨ z = y∨ z. Pick a
complement u of x∧ z in I[0,z] and then a complement v of x∨ z in I[u,1].
Prove that v is a complement of both x and y.]

8. Prove that in a distributive lattice, no interval can be projective with a
proper subinterval of itself.

9. a. Construct two countably infinite nonisomorphic Boolean lattices L0
and L1 such that Ord P(L0)∼= Ord P(L1).

b. Prove that if L0 and L1 are finite distributive lattices such that J(L0)∼=
J(L1), then L0 ∼= L1.

10. Let L0 and L1 be finite distributive lattices and let J0 and J1 be their re-
spective ordered sets of nonzero join irreducible elements. Let h be a
homomorphism from L0 into L1 such that h preserves top and bottom
elements. Let J(h) be the map with domain J1 defined by J(h)(b) =∧
{x : h(x)≥ b} for all b ∈ J1.

a. Prove that J(h) is an isotone map from J1 into J0.
b. Prove that J(h) is onto J0 iff h is one-to-one.
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2.6 Congruence Relations on Lattices

For every lattice L the lattice Con L is a distributive algebraic lattice, accord-
ing to Theorem 2.50 and Corollary 1.23. In this section, we will examine the
congruences of lattices in general and investigate Con L for particular kinds of
lattices L.

Let L be a lattice and let θ ∈Con L. It is a simple but useful observation that
the congruence classes modulo θ are convex sublattices of L. It is also useful to
notice that if a θ b iff a∧b θ a∨b for all a,b ∈ L. These remarks mean that θ is
determined by the pairs (a,b) belonging to θ with a≤ b.

THEOREM 2.64. Let L be a lattice and θ be a reflexive binary relation on L.
θ is a congruence relation of L iff for all a,b,c ∈ L,

i. a θ b iff a∧b θ a∨b.

ii. If a≤ b≤ c, a θ b, and b θ c, then a θ c.

iii. If a≤ b and a θ b, then a∧ c θ b∧ c and a∨ c θ b∨ c.

Proof. All three of these properties are clearly possessed by congruence rela-
tions, so we will only deal with the converse. Property (i) and the commutativity
of ∧ and ∨ yield the symmetry of θ . According to (iii), if a ≤ c ≤ b and a θ b,
then a θ c and c θ b–a kind of convexness. To see the transitivity of θ , suppose
a θ b θ c. It will follow from this convexness that a θ c, provided we first prove
that (a∧b∧ c) θ (a∨b∨ c). Observe that we have the following string of inclu-
sions and that the formulas resulting from replacing ≤ by θ in these inclusions
are also true:

a∧b∧ c≤ (a∨b)∧ (b∧ c) = b∧ c≤ b∨ c = (a∧b)∨ (b∨ c)≤ a∨b∨ c.

Therefore, two applications of (ii) yield the desired conclusion. Hence θ is tran-
sitive and, thus, an equivalence relation.

In checking the Substitution Property, we will only deal with ∨, leaving the
similar argument for ∧ aside. Since transitivity is already verified, we need only
show that a θ b implies a∨ c θ b∨ c. Property (i) tells us that a∧ b θ a∨ b.
From property (iii), we get (a∧b)∨ c θ a∨b∨ c. But a∨ c and b∨ c belong to
I [(a∧b)∨ c,a∨b∨ c]. So the convexity yields a∨ c θ b∨ c. �

Intuitively, L/θ is formed by collapsing the congruence classes, which are
always convex, to points. In a lattice, any congruence relation that collapses a
given interval may of necessity collapse others. Consider the transposed intervals
I[a∧b,a] and I[b,a∨b]. If a θ a∧b, then b = b∨ (a∧b) θ b∨a, so collapsing
I[a∧b,a] to a point forces I[b,a∨b] to collapse to a point. More generally, if θ

collapses an interval I to a point, then it must also collapse to points all intervals
projective with I; it is also clear that the congruence must collapse all intervals
projective with subintervals of the original interval. Generally, however, this
does not give a satisfactory account of the situation. The reader should easily
verify that collapsing any nontrivial interval of M3 collapses the whole lattice to
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a point. To obtain a characterization of congruences in lattices, we modify the
notion of projectivity.

DEFINITION 2.65. Let L be a lattice and let I[a,b] and I[c,d] be intervals in
L. We say that I[a,b] transposes weakly down into I[c,d] iff b = a∨ d and
c ≤ a. We say that I[a,b] transposes weakly up into I[c,d] iff a = b∧ c and
b ≤ d. We denote these weak transposes, respectively, by I[a,b]↘w I[c,d] and
I[a,b]↗w I[c,d]. Finally, we say that I[a,b] is weakly projective into I[c,d] iff
there is a finite sequence I[a0,b0] = I[a,b], I[a1,b1], . . . , I[an,bn] = I[c,d] such
that I[ai,bi] transposes weakly into I[ai+1,bi+1] for all i < n.

b = a∨d

a
d

c

I[a,b]↘w I[c,d]

a = b∧ c

I[a,b]↗w I[c,d]

b c

d

Figure 2.14:

The relation “weakly projective into” between intervals is transitive and re-
flexive, but it is not symmetric. Recall that CgL(c,d) denotes the principal con-
gruence of L generated by the pair 〈c,d〉.

THEOREM 2.66. (R.P. Dilworth [1950]). Let L be a lattice with a ≤ b and
c≤ d in L. Then 〈a,b〉 ∈ CgL(c,d) iff there is a finite sequence

a = e0 ≤ e1 ≤ e2 ≤ ·· · ≤ en = b

such that I[ei,ei+1] is weakly projective into I[c,d] for all i < n.

Proof. Let θ be the binary relation defined on L by u θ v iff there is a finite
sequence as described above, where a = u∧ v and b = u∨ v. It is clear from the
definition of weak projectivity that

〈c,d〉 ∈ θ ⊆ CgL(c,d).

We shall show that θ = CgL(c,d). It suffices to show that θ is a congruence
relation. Since θ is obviously reflexive, we will do this by verifying the three
properties listed in Theorem 2.64. Properties (i) and (ii) are immediate. For the
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purposes of property (iii), let a = e0 ≤ ·· · ≤ en = b be as described above and let
f ∈ L. Note that a∧ f = e0∧ f ≤ ·· · ≤ en∧ f = b∧ f and that I[ei∧ f ,ei+1∧ f ] is
weakly projective into I[ei,ei+1] and hence into I[c,d]. Joins work similarly. �

While this characterization of principal congruences in lattices is useful, it
can be sharpened in certain classes of lattices. A lattice L is said to have the
projectivity property iff whenever I[a,b] is weakly projective into I[c,d], then
I[a,b] is actually projective with a subinterval of I[c,d]. For lattices with this
property, principal congruences can be characterized as in Theorem 2.66, except
that each I[ei,ei+1] is projective with a subinterval of I[c,d].

EXAMPLE 2.67. A lattice without the projective property.

Proof. Let L be the lattice diagrammed in Figure 2.15. The interval I[b,a] trans-
poses weakly down into I[0,c], which transposes up to I[ f ,e]. So I[b,a] is weakly
projective into I[ f ,e]. But b is meet irreducible, so it is impossible for I[b,a] to
transpose up to any other interval. Since c is the only element that gives a when
joined with b, I[d,c] is the only interval to which I[b,a] transposes. Similarly,
since c is join irreducible and b is the only element that gives d when met with c,
we find that I[b,a] is the only interval to which I[d,c] transposes. Hence I[b,a]
is not projective with I[ f ,e] (or any of its subintervals), even though it is weakly
projective into I[ f ,e]. �

0

d

f
b c

a e

1

Figure 2.15:

THEOREM 2.68. Every modular lattice and every relatively complemented
lattice has the projectivity property.

Proof. First let L be relatively complemented. Suppose that I[a′,b′] transposes
up to I[c,d] weakly and that a′ ≤ a ≤ b ≤ b′. We argue that I[a,b] is projective
with a subinterval of I[c,d]. Let a∗ be a complement of a in I[a′,b]. Now just
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note that

a′ = a∧a∗

b = a∨a∗

so I[a,b]↘ I[a′,a∗] and

a′ = a∗∧ c

since a′ = b′ ∧ c and a′ ≤ a∗ ≤ b′. So I[a′,a∗]↗ I[c,a∗ ∨ c]. Therefore I[a,b]
is projective with I[c,a∗ ∨ c], a subinterval of I[c,d]. The proof can now be
completed by a straightforward induction on the length of the chain of weak
projectivity.

The case when L is modular is an easy consequence of Dedekind’s Transpo-
sition Principle. �

In distributive lattices, principal congruence relations have an especially sim-
ple form.

THEOREM 2.69. Let L be a distributive lattice and let I[c,d] be an interval in
L. 〈a,b〉 ∈ CgL(c,d) iff a∧ c = b∧ c and a∨d = b∨d for all a,b ∈ L.

Proof. Let θ = {〈a,b〉 : a∧ c = b∧ c and a∨d = b∨d}. First we prove that θ

is a congruence relation. θ is clearly an equivalence relation on L. Suppose
a θ b. Then

(a∨ e)∧ c = (a∧ c)∨ (e∧ c)
= (b∧ c)∨ (e∧ c)
= (b∨ e)∧ c

and evidently

(a∨ e)∨d = (b∨ e)∨d.

So (a∨ e) θ (b∨ e) for all e ∈ L. Meets behave in a similar fashion. Therefore,
θ is a congruence relation.

Since 〈c,d〉 ∈ θ , all that remains is to prove that θ ⊆ φ for every congruence
φ which collapses c and d. So suppose a θ b. Thn

a = a∧ (a∨b) = a∧ (b∨d) = (a∧b)∨ (a∧d)
φ (a∧b)∨ (a∧ c)
= (a∧b)∨ (b∧ c)
= b∧ (a∨ c)
φ b∧ (a∨d)
= b∧ (b∨d) = b

and so θ ⊆ φ , as desired. �
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The next theorem presents a distinctive property of the congruence lattices
of lattices. Roughly speaking, it says that the congruences on the direct product
of two lattices can be taken apart into congruences on the factor lattices.

THEOREM 2.70. If L0 and L1 are lattices, then

Con L0×L1 ∼= Con L0×Con L1.

Proof. Actually, part of this theorem is true for algebras in general:

Con L0×Con L1 is embeddable in Con L0×L1.

Define h : Con L0×Con L1→ Con L0×L1 by

〈a0,a1〉 h(θ0,θ1) 〈b0,b1〉 iff a0 θ0 b0 and a1 θ1 b1.

We leave it to the reader to verify that h is actually an embedding. For algebras
in general, this embedding can fail to be onto Con L0×L1, but for lattices it is
always onto. To see this, let m(x,y,z) stand for the expression (x∨ y)∧ z, p(x,y)
stand for x∧ y, and q(x,y) stand for x∨ y. In any lattice, the following equalities
then hold for all x and y:

m(x,y,y) = y

p(x,y) = p(y,x)
q(x,y) = q(y,x)

m(x, p(x,y),q(x,y)) = x.

To see that h is onto Con L0×L1, let θ ∈ Con L0×L1. Define θ0 on L0 by

a0 θ0 b0 iff 〈a,c〉 θ 〈b,c〉 for some c ∈ L1.

CLAIM: a θ0 b iff 〈a,c〉 θ 〈b,c〉 for all c ∈ L1.
Suppose 〈a,d〉 θ 〈b,d〉 and that c ∈ L1. Now, 〈p(a,b),c〉 θ 〈p(a,b),c〉 and

〈q(a,b),c〉 θ 〈q(a,b),c〉. Hence

〈a,c〉= 〈m(a, p(a,b),q(a,b)) ,m(d,c,c)〉
= m(〈a,d〉,〈p(a,b),c〉,〈q(a,b),c〉)
θ m(〈b,d〉,〈p(a,b),c〉,〈q(a,b),c〉)
= 〈m(b, p(a,b),q(a,b)) ,m(d,c,c)〉
= 〈m(b, p(b,a),q(b,a)) ,m(d,c,c)〉
= 〈b,c〉.

Using the claim, it is easy to prove that θ0 ∈ Con L0. In a similar way, we define
θ ∈ Con L1. Now to see that h(θ0,θ1) = θ , just follow the implications below:

〈a0,a1〉 h(θ0,θ1) 〈b0,b1〉 =⇒ a0 θ0 b0 and a1 θ1 b1

=⇒ 〈a0,c〉 θ 〈b0,c〉 and 〈d,a1〉 θ 〈d,b1〉
for all d ∈ L0 and all c ∈ L1

=⇒ 〈a0,a1〉 θ 〈b0,a1〉 θ 〈b0,b1〉
=⇒ 〈a0,a1〉 θ 〈b0,b1〉.
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Hence h(θ0,θ1)⊆ θ .
Now suppose 〈a0,a1〉 θ 〈b0,b1〉. So

〈a0,a1〉= m(〈a0,a1〉,〈p(a0,b0),a1〉,〈q(a0,b0),a1〉)
θ m(〈b0,b1〉,〈p(a0,b0),a1〉,〈q(a0,b0),a1〉)
= m(〈b0,b1〉,〈p(b0,a0),a1〉,〈q(b0,a0),a1〉)
= 〈m(b0, p(b0,a0),q(b0,a0)) ,m(b1,a1,a1)〉
= 〈b0,a1〉.

Thus a0 θ0 b0. Similarly, a1 θ1 b1. Therefore h(θ0,θ1) = θ . �

This theorem holds for a wider class of algebras than lattices. In fact, the
crucial requirement is the existence of several expressions [m(x,y,z), p(x,y) and
q(x,y)] built from variables and the fundamental operations for which certain
equalities hold in both factor algebras. This theorem supplies us with a strategy
for describing Con L for certain lattices L. In the first step, we try to write L, up
to isomorphism, as a direct product of lattices that cannot themselves be written
as direct products of other lattices. The second step then consists of analyzing
Con L in the case that L cannot be factored further. Let A be an algebra. A
is directly indecomposable iff A has more than one element and if A ∼= B×C
then either B has only one element or C has only one element.

Carrying out the first step in our strategy is easy, if we impose some kind of
finiteness condition on L.

THEOREM 2.71. Every lattice of finite height is isomorphic to a direct product
of finitely many directly indecomposable lattices. �

This theorem can be proven by a straightforward induction on height. The
proof is left in the hands of the reader.

The second step in the strategy requires more work and additional hypotheses
to obtain useful conclusions. We call an algebra A simple iff Con A has exactly
two elements. Every simple algebra is directly indecomposable (just consider
the kernels of the projective functions), but it is not hard to invent finite modular
lattices that are directly indecomposable (by virtue of having a prime number of
elements) but fail to be simple.

THEOREM 2.72. (R.P. Dilworth [1950].) Every directly indecomposable rel-
atively complemented lattice of finite height is simple.

Proof. Let L be a directly indecomposable relatively complemented lattice of
finite height. Let θ be a congruence on L different from the identity relation.
Pick u < v so that u θ v. Let u∗ be a complement of u in I[0,v]. Now observe that

0 = u∧u∗ θ v∧u∗ = (u∨u∗)∧u∗ = u∗ 6= 0.

Thus, {x : 0 θ x 6= 0} is not empty. Since L has finite length, in view of Theo-
rem 2.6 pick a to be a maximal element of {x : 0 θ x}. Since this set is an ideal,
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it is easy to see that a is the largest element in the ideal. Theorem 2.57 suggests
that L might be decomposable as I(a]× I[a). That theorem requires that a have
a complement and that L be distributive. We are still able to carry out roughly
the same argument, the difficult point being to establish enough “distributivity.”
CLAIM 0: x θ y iff (x∧ y)∨a′ = x∨ y for some a′ ≤ a.

Suppose that x θ y. Let a′ be a complement of x∧ y in I[0,x∨ y]. Then
a′∧ (x∨ y) θ a′∧ (x∧ y) = 0. So a′ ≤ a by the maximality of a. The converse is
immediate.
CLAIM 1: a∨ (x∧ y) = (a∨ x)∧ (a∨ y) for all x,y ∈ L.

Observe that

x θ a∨ x

y θ a∨ y

and so
x∧ y θ (a∨ x)∧ (a∨ y).

By Claim 0, pick a′ ≤ a so that

((x∧ y)∧ (a∨ x)∧ (a∨ y))∨a′ = (x∧ y)∨ ((a∨ x)∧ (a∨ y)) .

Using the absorption axioms, we obtain

(x∧ y)∨a′ = (a∨ x)∧ (a∨ y).

Finally, using this equation, we obtain

a∨ (x∧ y)≤ (a∨ x)∧ (a∨ y) = a′∨ (x∧ y)≤ a∨ (x∧ y)

and therefore a∨(x∧y) = (a∨x)∧(a∨y). Thus, a possesses some distributivity
in L. We need to know that a satisfies the dual of Claim 1 as well. To accomplish
this, we will characterize the property in Claim 1 in a selfdual way. Call an
element b distributive iff b∨ (x∧ y) = (b∨ x)∧ (b∨ y) for all x,y ∈ L.
CLAIM 2: b is distributive iff no nontrivial subinterval of I(b] is projective with
a nontrivial subinterval of I[b).

Suppose first that b is distributive and that I[x,y] is a subinterval of I(b] and
I[u,v] is a subinterval of I[b) such that I[x,y] and I[u,v] are projective. Define
φ = {〈z,w〉 : z∨b = w∨b}. Because b is distributive, φ is a congruence relation
on L. Now x φ y, so u φ v. But this means that u = u∨b = v∨b = v. Therefore,
I[u,v] is trivial and since I[x,y] is projective with I[u,v], it follows that I[x,y] is
trivial, too.

For the converse, suppose that b is not distributive. Pick x and y so that b∨
(x∧y) < (b∨x)∧(b∨y). Let ψ = CgL(0,b). Then b∨(x∧y) ψ (b∨x)∧(b∨y).
Use Theorem 2.66 to pick a sequence

b∨ (x∧ y) = e0 ≤ e1 ≤ ·· · ≤ en = (b∨ x)∧ (b∨ y)

such that I[ei,ei+1] is weakly projective into I(b] for each i < n. Since b∨ (x∧
y) < (b∨ x)∧ (b∨ y), choose j < n with e j < e j+1. So I[e j,e j+1] is a non-
trivial subinterval of I[b) that is weakly projective into I(b]. By Theorem 2.68,
I[e j,e j+1] is projective with a subinterval of I(b], as desired.
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CLAIM 3: a∧ (x∨ y) = (a∧ x)∨ (a∧ y) for all x,y ∈ L.
CLAIM 4: If a∧ x = a∧ y and a∨ x = a∨ y, then x = y.

Observe that

x θ a∨ x

x∧ y θ (a∨ x)∧ y

x∧ θ (a∨ y)∧ y = y.

By Claim 0, pick a′ ≤ a so that

((x∧ y)∧ y)∨a′ = (x∧ y)∨ y = y.

Therefore a′ ≤ y and a′ ≤ y∧a = x∧a ≤ x. This means that a′ ≤ x∧ y. Conse-
quently, x∧ y = y. By a similar argument, x∧ y = x. Therefore x = y.

Now define h : L→ I[a) by h(x) = (x∧ a,x∨ a). Easy computations us-
ing Claims 1 and 3 reveal that h is a homomorphism. Claim 4 is virtually the
statement that h is one-to-one. The fact that h is onto I(a]× I[a) follows as in
Theorem 2.57, using Claims 1 and 3 above in place of the distributivity of L.
Since L is directly indecomposable and a 6= 0, we deduce that I[a) has only one
element. Therefore a = 1 and θ is L×L. Hence L has just two congruences; it
is simple. �

COROLLARY 2.73. Every relatively complemented lattice of finite height is
isomorphic to a direct product of simple relatively complemented lattices of finite
height.

G. Birkhoff [] and K. Menger [] had earlier established that every comple-
mented finite dimensional lattice is isomorphic to a direct product of simple lat-
tices. The complemented finite dimensional simple modular lattices turned out
to be the two-element chain and the subspace lattices of nondegenerate finite
dimensional projective geometries. See §4.8 for an account of this important
result.

Combined with Theorem 2.70, Corollary 2.73 yields the following corollary.

COROLLARY 2.74. (R.P. Dilworth [1950].) If L is a relatively complemented
lattice of finite height, then Con L is a Boolean lattice.

The corollary can be drawn as well from the following theorem.

THEOREM 2.75. If L is a lattice with the finite chain condition and the pro-
jectivity property, then Con L is a Boolean lattice.

Proof. First suppose a ≺ b in L. Let c < d and 〈c,d〉 ∈ CgL(a,b). Accord-
ing to Theorem 2.66, pick a finite sequence c = e0 ≤ e1 ≤ ·· · ≤ en = d such
that I[ei,ei+1] is projective with a subinterval of I[a,b]. Since a ≺ b, there are
no proper subintervals, and therefore I[a,b] is projective with some subinter-
val I[ei,ei+1] of I[c,d]. Again by Theorem 2.66, we have 〈a,b〉 ∈ CgL(c,d), so
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CgL(a,b) is an atom in Con L. Since L has the finite chain condition, there is
a finite maximal chain from 0 to 1; let 0 = d0 ≺ d1 ≺ ·· · ≺ dn = 1 be one such
chain. Apparently,

CgL(0,1) = CgL(d0,d1)∨CgL(d1,d2)∨·· ·∨CgL(dn−1,dn).

This means that Con L is a bounded distributive lattice in which the top ele-
ment is the join of finitely many atoms. By Theorem 2.40, Con L is relatively
complemented. Therefore Con L is a Boolean lattice. �

COROLLARY 2.76. If L is a modular lattice of finite height, then Con L is
Boolean.

Exercises 2.77

1. Prove that if a≺ b in the lattice L and θ ∈ Con L, then either a/θ = b/θ

or a/θ ≺ b/θ in L/θ .

2. Prove that every lattice of finite height is isomorphic to a direct product
of finitely many directly indecomposable lattices of finite height. Does a
similar assertion hold for lattices satisfying the ascending chain condition?

3. Give an example of a finite directly indecomposable modular lattice that
is not simple.

4. Let L be a lattice. For each ideal I of L, define

Θ(I) = {〈a,b〉 : a∨ c = b∨ c for some c ∈ I}

and for each congruence θ ∈ Con L, define

I(θ) = {a : a/θ ≤ b/θ in L/θ for all b ∈ L} .

a. Prove that if L is distributive and I is an ideal of L, then Θ(I) ∈
Con L.

b. Prove that I(θ) = Idl L, for all θ ∈ Con L.

c. Prove that the following are equivalent:

i. L is distributive.
ii. For each ideal I of L, Θ(I) ∈ Con L and I (Θ(I)) = I.

iii. Every ideal of L has the form I(θ) for some θ ∈ Con L.

5. Let L be a lattice and a ∈ L. a is said to be standard iff

c∧ (a∨b) = (c∧a)∨ (c∧b) for all c,b ∈ L.
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The element a is said to be neutral iff

(a∧b)∨ (b∧ c)∨ (c∧a) = (A∨b)∧ (b∨ c)∧ (c∨a) for all c,b ∈ L.

Recall that a is said to be distributive iff

a∨ (b∧ c) = (a∨b)∧ (a∨ c) for all b,c ∈ L.

Thus an element is called distributive, standard, or neutral, depending on
whether a certain part of the distributive law is true when that element is
present.

a. Prove that a is distributive iff {〈b,c〉 : a∨b = a∨ c} is a congruence
relation on L.

b. Prove that a is standard iff a is distributive and for all b,c ∈ L, if
a∧b = a∧ c and a∨b = a∨ c, then b = c.

c. Prove that a is neutral iff for any b,c ∈ L the sublattice generated by
{a,b,c} is distributive.

d. Prove that every neutral element is standard and that every standard
element is distributive.

e. Prove that if L is modular, then every distributive element is neutral.

f. Prove that the set of neutral elements of L is the intersection of the
maximal distributive sublattices of L.

g. Prove that if L is a complemented modular lattice then a is neutral
iff a has a unique complement.



C H A P T E R T H R E E

Unary and Binary
Operations

3.1 Introduction

In the two previous chapters, we introduced the reader to some of the fundamen-
tal kinds of algebras with which we will be dealing throughout this work, such as
lattices, semilattices, and Boolean algebras. Before turning to the formal presen-
tation of the basics in Chapter 4, we devote this chapter to some other kinds of
naturally occurring algebras. Such examples are central and important, because
they help provide the diversity that is necessary for the discovery of general re-
sults in algebra.

The idea of an algebra allows arbitrarily many operations of arbitrary rank,
and yet, as we remarked at the beginning of Chapter 1, the surprising fact is that
all the classical algebras are built with unary and binary operations, especially
binary ones. Moreover, except for R-modules, the classical algebras require
only one or two binary operations and usually no unary operations. (For each
r in the ring R of scalars, R-modules have one operation fr on multiplication
by r.) The same is true for the lesser-known algebras we will describe in this
chapter. Experience has thus shown that almost all of the diversity of the theory
of algebras already occurs for one or two binary operations. In this chapter, we
provide a respresentative sampling of this diversity and at the same time describe
some special kinds of algebras that will be useful for our later work.

Before leaving this introduction, we will briefly address the question, which
we mentioned in Chapter 1, of whether there is any mathematical basis for think-
ing binary operations are special. (We will address this question more systemati-
cally when we study the algebraic representation of lattices, monoids, and groups
in later volumes.) We may especially ask whether a single binary operation in in-
herently different for some other collection of operations, such as a single ternary
operation or two binary operations, and whether a finite collection of operations
is inherently different from an infinite collection.

To understand the relationships between operations of various arities, it helps
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to have the notion of a term operation of an algebra A = 〈A,F1,F2, . . .〉, which
we now present somewhat informally. (For a more formal presentation, see Def-
inition 4.2 in §4.1.) The set of term operations is the smallest set that contains
each Fi, for 0≤ i < n, the coordinate projection operation

pn
i (x0, . . . ,xn−1) = xi

and that is closed under composition.

3.2 Unary Algebras

3.3 Semigroups

3.4 Groups, Quasigroups, and Latin Squares

3.5 Representations in EndA and SymA

3.6 Categories
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Fundamental
Algebraic Results

4.1 Algebras and Clones

4.2 Isomorphism Theorems

4.3 Congruences

4.4 Direct and Subdirect Representations

4.5 The Subdirect Representation Theorem

THEOREM 4.1 (The Subdirect Representation Theorem). Every algebra A has
a subdirect representation with subdirectly irreducible factors that are quotient
algebras of A.
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