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ON n-PERMUTABLE CONGRUENCES 

J. H A G E M A N N  and A. MITSCHKE 

In this note we prove a theorem equivalent to the well-known Mal'cev-type- 
theorem for n-permutable equational classes, but simpler in form. 

The result which is stated in [2], [5J and [8] is the following one. 

THEOREM 1. For any equational class 9~ the following statements are equivalent: 
(a) The congruence relations of  every algebra of  9~ are n-permutable. 
(b) There exist (n + 1)-ary algebraic operations Po . . . . .  p,  of  9~ satisfying the follow- 

ing identities 

P o ( ~ o  . . . .  , x , )  = Xo, 

P , - 1  (Xo, ~o, x~, x~, . . . )  = P , ( ~ o ,  Xo, x~, x~ . . . .  ) 

~, -1  (~o, x l ,  ~1, x3, ~3 . . . .  ) =p , (Xo ,  xl ,  x l ,  x3, ~3 . . . .  ) 
P . ( ~ o  . . . .  , x , )  = x . .  

i even, 
i odd,  

THEOREM 2. For any equational class 9.[ the following statements are equivalent: 
(i) The congruence relations of  every algebra of  9~ are n-permutable. 
(ii) There exist ternary algebraic operations ql . . . . .  q,-1 o f  9~ such that 

ql (x, z, ~) = ~,  
q,-1 (x, x, ~) = ~, (x, ~, ~), 
~ , _ l ( x , x ,  ~) = ~.  

Remark. These algebraic operations are the natural generalization of  the well- 
known Mal'cev condition for permutable classes. H. Werner proved in [7] that the 
following statements are equivalent for any equational class 9;[: 
(1) The congruences o f  each A ~9~ are permutable. 
(2) For any A Eg~ each reflexive subalgebra of  A 2 is symmetric. 
(3) For any A E9~ each reflexive subalgebra of  A 2 is transitive. 

Generalizing this J. Hagemann proved in [3]: For any equational class 9~ the 
following statements are equivalent: 

(1) The statements o f  Theorem 2. 
"(2) For any A ~ ~ and each reflexive subalgebra R o f  A2 

R -1 = R . . . . .  R (n - 1)-times R.  
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(3) For any A ~ 9~ and each ref lexive  subalgebra R o f  A 2 

R . . . . .  R c R . . . . .  R 
n-t i~mes "(n- l)-tiraes 

Proof .  We shall prove the equivalence of(ii) and theorem 1 (b). 

(ii) =~ (b). I f  we define the operations/5o . . . . .  /5. by 

/50 (Xo . . . .  , x.) : =  Xo 
/5,(Xo . . . . .  x , )  : = q, (x,_ l, ~,, ~,+ l)  
/5, (Xo . . . . .  x . ) : =  x . ,  

l < . i < ~ n - 1  

we get for 2 ~< i<.Nn - I 

/51-1 (Xo, Xo, X2, X2 . . . .  ) -~" C]i-1 (Xi-1 ,  X i - l ,  Xi) 
= ~]i ( x l -  1, xi,  xi)  i even 

= . 0 ,  (Xo, ~o,  x2,  x~,  . . . )  

/5,- ~ (Xo, ~1, ~ , ,  x3, ~ . . . .  ) = q,-1 (x ,_ t ,  ~,_ ,,  ~,) 

= Ch ( x i -  1, xi,  x i )  i odd 

=/5,(Xo,  x l ,  ~ t ,  x~, x3 . . . .  ) 

because in both cases Xi_ 2 = X i _  ! and x ~ = x i +  1 and condit ion (ii) can be applied. 
Moreover  we have 

/5o(Xo, X . X .  X3, X3 . . . .  ) = X o  

by definition and 

/ s t (Xo,  Xx, Xt ,  Xa, X3 . . . .  ) = q l ( x o ,  xl ,  x l ) = X o  by (ii). 

F r o m  the above formulae we see that  it does not  matter  if n is odd or  even. In both 
cases we get by (ii) ~].-t ( x . - t ,  x . - 1 ,  x . ) = x . .  

(b) ~ (ii). We define for 1 4  i<~n - 1 

q , ( x ,  y ,  z ) : =  # , ( x  . . . .  , x ,  y ,  z . . . . .  z ) 
,-times (n-- i)2times 

Then we get 

41 (x ,  z ,  z )  = / s t  (x ,  z ,  ~ . . . .  , ~) 

= / 5 o  (x ,  z ,  z . . . .  , z )  
m-X 

by (b) 
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and for  2~<i<~n-  1 

4 , - , ( x , ~ , z ) = L - , ( ~  . . . . .  ~, ~ . . . . .  ~) 
i-t{mes ' ('n+ 1-~i)-times 

= ]~i (X . . . . .  X, Z . . . . .  Z)  
/-times (n+ l -O-times 

= 4i (~, z, z) 

because in bo th  cases i even or odd the formula  of  (b) can be applied. Moreove r  we 
get by the above a rgument  

4 . -~  (~, x, ~) = b . - i  (~ . . . . .  x, ~) 
=p,(x,...,x,z) 
= Z  

which completes  the proof .  
N o w  we investigate the few known concrete examples.  Using theorem 2 (ii) the 

opera t ions  can be defined more  symmetrically.  
One example  for  ( n +  1)-permutable equational  classes has been given by E. T. 

Schmidt  [6]. He  defines an n-Boolean algebra B = ( B ,  v ,  A , f  1 . . . . .  fn, Uo,. . . ,  u,) o f  
type (2, 2, 1, . . : ,  1 0 . . . . .  0) by the following condit ions:  

~'~-~mes "in + 1 )-t imes 
(B, v ,  ^ )  is a distr ibutive lattice and the equat ions 

X V U o = X  , 

X V I A  n ~ tl n 

[ (~ v " i - , )  ^ ~i] v f , ( ~ )  = . ; ,  
[ (~ v ~ i - , )  ,, ~,] ^ f , ( x )  = ~ i - i  

are valid for  2~. 
One easily verifies the equa t ionsf i  (x) v x = u i v x and f l  (x) A X = u i_ 1 A X. 
We now define for  1 <~i<~n the opera t ions  

and get 

Pi (x, y, z) := Ix A 

L (~, z, ~) = [~ ^ 
~ ( X A  

b , - i  (x, ~, z) = [~ A 
~(2r A 
~ [X  A 
~ [X  A 
~ [X  A 
= p i ( x ,  

( f . - ,+ i  (Y) v z)] v [z A ( f~(y)  v x)]  

( f .  (z) v z)] v [~ ^ ( f ,  (z) v ~)]  
. . )  v (~ ^ "o)  v (~ ^ ~) 

(f~_,+~ (x) v ~)3 v [z ^ (A_~ (x) v ~)3 
~ . - i+ , )  v (x ^ ~) v [~ ^ ( " , - i  v x)l 
( . . _ ,+ ,  v ~)1 v (z ^ u,_~) v (~ ^ x) 
(f~_,+, (~) v ~)1 v (z ^ A(z)) v (~ ^ x) 
( f . _ ,+ ,  (~) v z)] v [z  ^ ( f , ( z )  v ~)]  
Z, Z) 
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and 

O N  n - P E R M U T A B L E  C O N G R U E N C E S  

fin(x, x, z) = [-x ^ (f i  (x) v z)] v [z A (fn (x) v x)] 
= ( x  ^ Uo) v ( x  ^ z )  v ( z  ^ u . )  
= Z  
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which are the conditions of theorem 2 (ii) for n + 1. 
There are examples of 3-permutable equational classes. 

EXAMPLE 1 ([4]). Implication algebras. 
An implication algebra is an algebra (/, -) of type (2) which satisfies the following 

equations 

(xy) x = x ,  
(xy) y = (yx) x, 
x (yz) = y (xz) .  

Here we write xy instead o fx ' y .  
From the definition one can conclude the existence of a unique element 1 satis- 

f y i n g x . x =  1 and l . x = x .  
So, if we define ternary operationsp, q by 

we get 

and 

t5 (x, y, z) :  = (zy) x and 4 (x, y, z) : = (xy) z ,  

/5 (x ,  z ,  z )  = ( ~ z )  x = i x  = x ,  

/5 (x ,  x ,  ~)  = ( z x )  x = ( x z )  z = ~i (x ,  z ,  z )  

( x ,  x ,  z )  = ( x x )  z = z 

EXAMPLE 2 ([1 ]). Right-complemented semigroups. 
A right-complemented semigroup is an algebra (S , . ,  *) of type (2, 2) satisfying 

the equations 

x ' ( x * y ) = y ' ( y * x ) ,  
x y * z  = y * ( x * z ) ,  

x ' ( y * y ) = x .  

Right-complemented semigroups are 3-permutable as was shown by B. Bosbach 
according to theorem 1 (b). 
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and  

Def in ingp  (x, y, z ) : =  x ( y . z )  and  4(x ,  y, z ) : =  z ( y , x )  we get 

p (x,  2, 2) = x ( z ,  z )  = x ,  
p (:,, x,  2)  = x (x  �9 z )  

= z ( z , x )  

= q ( x ,  2, 2) 

4 ( x ,  x,  z)  = 2 ( x ,  x )  = z 

This p r o o f  even shows tha t  we have a larger  class o f  a lgebras  which is 3 -permutab le ,  

because we used only  two o f  the three independent  axioms.  
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