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O n  J6nsson's  theorem 

RALPH FRzzsE* 

This paper  surveys some results which are closely related to J6nsson's  famous 

theorem. The theorem states that every subdirectly irreducible algebra in the 

variety generated by a class ~l of similar algebras is in HSPu (~f) provided V(Y() is 
distributive (i.e. has distributive congruence lattices) [17]. Of course Pu(Yf) stands 

for ultraproducts of members  of Yl. This theorem is the main impetus for the 
resurgence in the study of varieties of algebras, in particular lattice varieties. The 

theorem is used so often that one often forgets to acknowledge it. There  have 

been several important  applications of J6nsson's theorem. Kirby Baker  has shown 
that a finite algebra in a distributive variety has a finite basis for its equational 

theory [1]. Ralph McKenzie has given several applications to lattice varieties and 

lattice structure theory in [19]. 

The  first section of this paper  shows how J6nsson's theorem is applied to 
obtain an important  but over looked result of Christian He r rmann  and Andras  

Huhn  on the embeddabil i ty of modular  lattices into complemented  modular  

lattices. In the second section we give what now appears to be the correct 
generalization of J6nsson's  theorem to modular  varieties (=variet ies of algebras 

with modular  congruence lattices). This result is in terms of the "commuta to r "  - a 

new binary operat ion on all congruence lattices of algebras in a modular  variety. 
The definition and important  facts about  the commuta tor  will be reviewed in w 

If two finite, subdirectly irreducible algebras generate the same distributive 
variety, then J6nsson's  theorem implies they are isomorphic. This is false for 

modular  varieties. In w we investigate under what additional hypotheses it is 
true. For example,  if one of the algebras is simple, it is true. The third section also 
investigates to what extent other consequences of J6nsson's theorem are true in 

modular  varieties. 

w Complemented modular lattices 

It  is easy to see that every lattice can be embedded  into a complemented  
lattice and by Birkhoff 's theorem every distributive lattice can be embedded  into a 
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complemented distributive lattice. The corresponding question for modular lat- 

tices was one of the major  problems in lattice theory in the 1930's. It was solved 
in the early 1940's when R. P. Dilworth and M. Hall constructed a counterexam- 
ple [13], [4]. A proof that not all modular lattices can be embedded into 
complemented modular lattices using Jdnsson's theorem runs as follows. Let  
denote  the class of all complemented modular lattices. Let  Y~I be the class of 
modular lattices of dimension (= length) at most three. Let ~(2 be the class of 
arguesian lattices (see p. 103 of [3]). By a result of Jdnsson, every subdirectly 
irreducible lattice in ~ lies in ~(1U~2 ([16] or Theorem 13.5 of [3]). But since 
ultraproducts preserve first order sentences, HSPu(Y(1 USg2)=YflUY(2. Thus by 
J6nsson's theorem every subdirectly irreducible lattice in V(qf) lies in 5gx U g(2. 
The first Hall-Dilworth example, L1, consists of a nondesarguean projective plane 
glued over a one dimensional quotient to a copy of M3. It is schematically 
represented in Figure 1. This is a nonarguesian, simple modular lattice of length 
four. Hence by the above gl~ V(~). In particular LIr (It is still open 
whether S(~) = HS(~).) 

L1 = 

Fig. 1 

The result of J6nsson quoted above is relatively easy, not requiring any 
coordinatization theorems. Nevertheless the above proof cannot really be consi- 
dered easier than Hall 's and Dilworth's but it is more palpable to a modern 
audience and does prove a stronger result. The  technique is also easy to apply to 
find other counterexamples. Hall and Dilworth produced two other lattices, L2 
and g 3. L 3 is also a simple modular, nonarguesian lattice of length four, and 
hence not in V(~) by the same argument. With a more involved argument it is 
possible to show L2 r V(~). 

Modular lattices are important because most of the lattices associated with the 
classical algebraic systems are modular. From this point of view the lattices L1, 
La, and L 3 a re  esoteric. Indeed, none of them is in any modular congruence 
variety. (A congruence variety is a variety of lattices generated by the congruence 
lattices of a variety of algebras.) For L1 and g3 ,  which are nonarguesian, this 
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follows from the author's result with J6nsson [7]. L2 is shown not to be in any  
modular congruence variety in [6]. 

Is there a more natural counterexample? The answer is yes. C. Herrmann and 
A. Huhn have shown that L = L(Z3), the lattice of subspaces of the direct product 

of three copies of the cyclic group of order 4, is not in V(%~ The idea of the proof 
is this: with the aid of coordinatization techniques one can show that every 
subdirectly irreducible complemented modular lattice is in ~(1 or Y(~, where Y~I is 
as before and Y(~ is the class of lattices embedded into a lattice of subspaces of a 
vector space [16], [3]. Thus by J6nsson's theorem the subdirectly irreducible 
members of V(~) lie in lISP, (Y(1 U Y(~) = HSPu (Y~) U HSPu (5~) = 
Y~1UHSP~(Y{~)c_y~1UV(Y~). Clearly L(Z43) is not in ~'l. There is a lattice 

equation e valid in Y{; but not in L(Z]),  showing L ( Z ] ) r  V(Y{;). Indeed, recall 
that 3-frames of characteristic 4 form aprojective configuration in the class of modular 
lattices (see Theorem 1.6 of [5]). This means that there are lattice words which 
generate, in any modular lattice, a frame of characteristic 4 (this means the ring 
associated with the frame satisfies ((14- 1) + 1) + 1 = 0). Using these words we 
make an equation e which says 1 + 1 = 0. Thus e will hold in a modular lattice L if 
and only if every 3-frame satisfying ( ( t + 1 ) + 1 ) + 1 = 0  in L actually satisfies 
1 + 1 -  0. Thus e fails in L(Z  3) but holds in Y~. 

w J6nsson's theorem in modular varieties 

Let V be a variety of algebras with modular congruence lattices (i.e. a modular 
variety). J_ Hagemann and C. Herrmann [12], following J. D. H. Smith [20], have 
shown how to define a new binary operation, denoted [ , ], on the congruence 
lattices of members of F. This operation has proved useful in obtaining results for 
modular varieties which seemed impossible before. The author's paper with Ralph 
McKenzie [9] surveys the basic properties and some of the applications of the 
commutator.  We list some of the properties we require. For oz,/3,/3, c O(A),  
A ~ ~ and f a homomorphism from A onto B c F with kernel ~r we have: 

(1) [o~,/3]-<a A/3 

(2) [a,/3] = [/3, ~] 

(3) [~, V/3,] = V [~,/3,] 

(4) [o~,/3] v ,n- = f - l [ f ( o ~  v ,rr), f ( /3 v ,n-)]. 

In fact the commutator  can be defined as the largest binary operation defined on the 
congruence lattices of members of ~ satisfying (1) and (4). Note by (2) and (3) the 
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commuta tor  is monotone  in each variable. If F is the variety of groups, the 

commuta tor  is just the usual commuta tor  of normal  subgroups. If V is the variety 

of commutat ive  rings, then the commuta tor  is just ideal multiplication. The 
connection between distributivity and the commuta tor  is this: a modular variety is 
distributive if and only if [a, [3] = a A/3 holds identically. 

If /3 6 0 ( B ) ,  there is, by (3) a largest congruence a satisfying [a, /3] = 0. We  

call a the annihilator of/3. The monolith of a subdirectly irreducible algebra is the 
unique atom of the congruence lattice. With this terminology the generalization of 
J6nsson's  theorem can be stated. 

T H E O R E M  1 (Jdnsson, Hagemann,  Her rmann ,  Freese, McKenzie,  

Hrushovskii).  Let Y( be a class of algebras with V(~() modular. I f  B ~ V(gg) is 
subdirectly irreducible and a is the annihilator of the monolith of B, then B/a 
HSP,(~O. I f  V(Sg) is locally finite, then B/a  ~ SP~HS(~(). 

If V(Y0 is distributive, then by the above remarks  a = 0 so J6nsson's  theorem 
is a corollary of this theorem. If a ~ 0, then a -> ~, where Ix is the monoli th of B. 

In this case we get [tL, ix] = 0. The corollary that either [~, ix] = 0 or B ~ HSPu(~)  
is the H a g e m e n n - H e r r m a n n  result [12]. The  last sentence of the theorem is the 

Freese-McKenzie  result [9]. An example showing that local finiteness is necessary 

is given there. Quite recently Udi Hrushovskii  proved the theorem as stated. The  

proof  we present here (which was construted with William Lampe)  is quite close 
to Jdnsson's  proof  of his theorem. However  Hrushovskii 's  proof  is not too 

different. J6nsson's  proof  depends on the fact that  in a distributive lattice a meet  
irreducible element  is mee t  prime. The present  theorem depends on a weakened 

version of this s ta tement  for modular  lattices given in (*) below. 

By Birkhoff 's  theorem we may assume B ~-C/0 where C_cl-Ii~A~, A~ ~Sg. If 

J___ I, we let ~ j  be the kernel of the natural map from C to  l--[isjni. Recall that 

~s A ~r: = ~Ju~: and that J __ K implies ~/j _> ~ .  Since B is subdirectly irredicible, 0 

is uniquely covered by a congruence 0- If we let q~ 6 0 ( C )  be the largest 
congruence such that [4J, q~]-< 0, then by (4) q~ corresponds to a in the isomorph-  
ism of 1/0 and O(B).  In particular, B/a  ~ C/q~. 

If /3, ~ ~ O(C),  then 

/3 A V --< 0 implies either/3 _< 0 or ~ --< 0 or both/3 --< ~p and V --< ~. (,) 

To see this suppose /3A~--<O, /350 and ~,~0. Then /3  vO->qJ and hence [% #r]_< 
[%/3 v O] = [%/3 ]  v [% 0]--< ('t' A 13) V 0 = O. Thus by def in i t ion , / - -  ~. Simi lar ly  /3 --< 

Let ~ be a filter on I maximal with respect to the proper ty  J ~ , ~  implies 
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~j---0. Let  ~ be an ultrafilter extending o~. We claim that J ~  ~ ~j---< q~. 
This is clear if Y 6 go; so assume J E 0~/_ ~-. By the maximality of o~ neither J nor J '  
can be adjoined to o~. It is easy to see that this implies there is a K c ~ such that 

~lJnr<~0 and ~l~'nK~0. But then 

"qjnKA ~ls'nK = ~g ~ 0. 

Hence by (*) ~11nK---q~. But ~--<~Jn~:, so the claim is proved. 
Let  0ou ~ O(C) be the restriction of the ultraproduct congruence on l-It A~ to C. 

Then C/0ou is a subalgebra of the ultraproduct of i-I~ A~ by ag. It follows from the 
claim that 0ou--- ~p so that B/a  ~- C/q~ c HSPu(~) .  [] 

For an example of the structural implications of Theorem 1 let B be a 
subdirectly irredicible algebra with monolith /x, satisfying [/x,/x]= 0, then each 

/x-block is in a natural way a module over a certain ring [11], [9]. By a theorem of 
Gumm if two /x-blocks lie in the same a-block,  then they are isomorphic [10], 
[9]. The above theorem then tells us that if B e  V ( A ) ,  A finite, and ]BI>[AI, 
then [~z,/x]=0 and there are at most ]AI isomorphisms types of modules of 
/x-blocks. Moreover  by a result of [9], each /x-block has cardinality at most ]A[. 

w Other J6nsson-type theorems 

If two finite subdirectly irreducible algebras generate the same distributive 

variety, then J6nsson's theorem implies that they are isomorphic. This is false for 
modular varieties. In [8] we constructed subdirectly irreducible modules of sizes 8 
and 16 which generate the same variety. The two nonabelian groups of order  8 
generate the same variety. For modular varieties we have the following result. 

T H E O R E M  2. Let B be a subdirectly irreducible algebra and assume that A is 

either subdirectly irreducible with [IXA, IZA] = /xa, or is simple. Also assume A and B 
generate the same modular variety. I f  either A or B is finite, then A -~ B. 

This theorem is proved in [9]. The proof is a nice application of the com- 
mutator  theory and Theorem 1. 

Another  consequence of J6nsson's theorem is that in a finitely generated, 
distributive variety the subdirectly irreducible algebras can be no larger than the 
generating algebra. This is false in the modular case; in fact a finitely generated 
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modu la r  var iety can have arbitrarily large subdirect ly irreducible algebras. W e  do 

know that  ei ther  there  are subdirect ly irreducible algebras of arbitrarily high 

cardinali ty or  there  is an n < ~o such that  all subdirect ly irreducible algebras have 

size at mos t  n [8]. E v e n  in the latter case it is possible to have subdirect ly 

irreducible algebras larger  than  the genera t ing algebra (see [8], page  428). For  

simple algebras we do have the fol lowing result. 

T H E O R E M  3. Let  A be finite and assume  V ( A )  is modular. Le t  B c V ( A )  be 

simple. Then  I B I ~ I A I .  

J6nsson ' s  t he o re m  also implies that  a finitely genera ted  distributive variety can 

have only  finitely m a n y  subvarieties.  Sheila Oates  and Mike V a u g h a n - L e e  have 

cons t ruc ted  a finitely genera ted  modula r  variety with a descending chain of  

subvarieties [18]. T h e y  use this example  to refute  certain possible conjectures  

concerning  critical algebras and finitely based algebras. H o w e v e r  the fol lowing 

quest ion,  first suggested to the au thor  by Ra lph  McKenzie ,  is open:  does the lattice 

o f  subvarieties o f  a finitely generated modular  variety satisfy the ascending chain  

condit ion? O r  equivalently,  is every subvariety o f  a finitely generated modular  

variety f initely generated? 
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