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Abstract. Lattice diagrams, known as Hasse diagrams, have played an
ever increasing role in lattice theory and fields that use lattices as a tool.
Initially regarded with suspicion, they now play an important role in
both pure lattice theory and in data representation. Now that lattices
can be created by software, it is important to have software that can
automatically draw them.

This paper covers:

– The role and history of the diagram.

– What constitutes a good diagram.

– Algorithms to produce good diagrams.

Recent work on software incorporating these algorithms into a drawing
program will also be covered.

An ordered set P = (P,≤) consists of a set P and a partial order relation ≤
on P . That is, the relation ≤ is reflexive (x ≤ x), transitive (x ≤ y and y ≤ z

imply x ≤ z) and antisymmetric (x ≤ y and y ≤ x imply x = y). If P is finite
there is a unique smallest relation ≺, known as the cover or neighbor relation,
whose transitive, reflexive closure is ≤. (Graph theorists call this the transitive
reduct of ≤.) A Hasse diagram of P is a diagram of the acyclic graph (P,≺)
where the edges are straight line segments and, if a < b in P, then the vertical
coordinate for a is less than the one for b. Because of this second condition arrows
are omitted from the edges in the diagram.

A lattice is an ordered set in which every pair of elements a and b has a least
upper bound, a ∨ b, and a greatest lower bound, a ∧ b, and so also has a Hasse
diagram.

These Hasse diagrams1 are an important tool for researchers in lattice theory
and ordered set theory and are now used to visualize data.

This paper deals the special issues involved in such diagrams. It gives several
approaches that have been used to automatically draw such diagrams concen-
trating on a three dimension force algorithm especially adapted for ordered sets
that does particularly well.

We begin with some examples.

1 In the second edition of his famous book on lattice theory [3] Birkhoff says these
diagrams are called Hasse diagrams because of Hasse’s effective use of them but that
they go back at least to H. Vogt, Résolution algébrique des équation, Paris, 1895.



1 Some Examples

Generally lattice theorists have a fairly precise idea of how their diagrams should
look. Figure 1 gives an example.

a b dc

Fig. 1. The diagram of a small modular lattice

Of course the reflection of this diagram around the vertical axis would be
considered equally acceptable but Figure 2 is another possible diagram of the
same lattice.

While any permutation of the elements of a particular level would produce
a correct representation of the order, almost any such permutation would make
the diagram unrecognizable.

Most lattice theorists would draw the lattice of subsets of a three element set
as the cube drawn on the left of Figure 3. Orthomodular lattice theorists often
prefer to draw it as in the center but no lattice theorist would draw it as is done
on the right.

Thus while a randomly chosen diagram will be mathematically correct, it is
very likely to be useless. Prior to lattices being generated by computer programs
this was not a problem: mathematicians knew (at least in most cases) how a
particular lattice should be drawn and drew it that way.

2 A Brief History of the Diagram2

2 Pseudo-history might be a better description of this section. The author’s mathe-
matical great grand parent is Eric Temple Bell who is known for his colorful, albeit
not entirely accurate, accounts of the history of mathematics; see [18].



a c bd

Fig. 2. A different diagram of the lattice of Figure 1

Fig. 3. The lattice of subsets of a three element set. Left: the usual diagram; Center:
as sometimes drawn by orthomodular lattice theorists; Right: an ugly version

As mentioned earlier lattice diagrams are often called Hasse diagrams in honor
of H. Hasse who used them effectively. Apparently the earliest lattice theorists
such as R. Dedekind did not use diagrams to represent lattices. They began to
be used in the 1930’s but more as a tool for discovering new results; they rarely
appeared in the literature.

The free modular lattice with three generators (which is drawn in Figure 8)
was first described by Dedekind in [7]. O. Ore [17] gives something resembling a
diagram by placing the elements of the free modular on the page in an arrange-
ment reflecting the order but no lines are drawn. Ore, in connection with his
work on direct decompositions of algebraic systems, asked R. P. Dilworth if a,
b, c and d are elements of a modular lattice such that every pair meets to the
least element and all pairs join to the top except possibly the pairs a, b and c, d,
do all pairs join to the top? Dilworth drew a diagram to show this was false; see
Figure 4. Ore, like many lattice theorists of his era, was skeptical of diagrams



and asked Dilworth to find this lattice as a sublattice of the lattice of normal
subgroups of a group.

Another interesting thing about this diagram was that Dilworth used both
red and black to draw it. (If you are reading a print version of this paper, you
can see the color version at the author’s web site.) This use of color way back
in the 1930’s makes the diagram much easier to understand and better than the
diagrams in journals even today.

a b dc

Fig. 4. A counter-example to Ore’s question

A. Day, C. Herrmann, and R. Wille [4] constructed a lattice much like this
one in their important study of four generated modular lattices. It shows, for
example, that M4, the six element lattice with a least and greatest element and
4 incomparable elements, is not a projective modular lattice.

In [8] Dilworth cites as an example J. E. McLaughlin paper [16] in which
he proves that an atomic lattice with unique comparable complements must be
modular. (See [1] for a history of this important lattice theory problem.) As



was often done at that time, McLaughlin used diagrams in finding his proof but
omitted them from his paper. Dilworth’s paper shows how much more under-
standable the proof can be with the use of diagrams.

By the 1970’s diagrams had become an important tool in lattice theory. The
appendix has several diagrams that have played an important role in research,
biased toward my own work. Figure 8 shows the free modular lattice on three
generators, FM(3), and the lattice freely generated by M3 and two extra ordered
elements below one of the generators. Both are used repeatedly in the study of
modular lattices.

Figure 10 shows the free modular lattice FM(2+2) and free lattice FL(2+2)
generated by two 2-element chains. Of course the sublattice generated by two 2-
element chains in any lattice must be a homomorphic image of FL(2+2) and thus
these lattices are a useful tool in lattice theory. It is interesting that FL(2 + 2)
was described by R. A. Dean in [6] but it was H. L. Rolf who diagrammed the
lattice in [23] and since then it is known as Rolf’s lattice.

The lattice on the left of Figure 11 is J. B. Nation’s semidistributive lat-
tice which is not a bounded image of a free lattice (answering a question of
R. McKenzie). Nation and I constructed the lattice on the right of Figure 11
from this lattice using Alan Day’s doubling construction. We knew this lattice
had certain properties and hoped it had certain additional properties but we
were having trouble proving that it did. To our surprise we found we were actu-
ally able to diagram this lattice. Once we had the diagram of the lattice, it was
clear that it had the properties we wanted.

Figure 9 diagrams the congruence lattice of the free algebra on one generator
in Polin’s variety. This diagram played a critical role in the characterization of
varieties with modular congruence lattice of [5].

3 Automatic Drawing

In the early 1980’s J. B. Nation and I were working on free lattices. The al-
gorithms for deciding equality of terms and for finding the canonical form of
elements were tractable; that is, polynomial time, but rather unpleasant for hu-
mans. So we wrote programs to do this (mostly in Lisp). Associated with each
element of a free lattice is a finite lattice that determines whether or not the
element has lower covers (lower neighbors). For example the lattices associated
with (x∨ (y ∧ z))∧ (y ∨ z) and with (x∨ (y ∧ z))∧ (y ∨ (x∧ z)) are diagrammed
in Figure 5. (Since the second lattice is semidistributive but the first is not,
(x∨ (y ∧ z))∧ (y ∨ z) has a lower cover but (x∨ (y ∧ z))∧ (y ∨ (x∧ z)) does not;
see [10]).

I had programs to automatically calculate these lattices, but it did not give a
diagrams. It just gave a list of the elements and covers. It is much more difficult to
understand the lattice from this sort of data, just as in Formal Concept Analysis
lattices help immensely in visualizing data. So I wrote a program to produce a
lattice diagram. But was disappointed because even small, well known lattices
were usually unrecognizable. For example the eight element Boolean algebra,



Fig. 5. The lattices L((x ∨ (y ∧ z)) ∧ (y ∨ z)) and L((x ∨ (y ∧ z)) ∧ (y ∨ (x ∧ z)))

drawn on the left of Figure 3 often looked like the center or right drawing.
Clearly something better was needed.

4 Our Algorithm

Our algorithm is based on a combination of a mathematical rank function to
determine the height and a modification of the “forces” method of graph theory.

The program first calculates the rank function on the ordered set and uses
this to determine the height of the elements. It then places the points in three
space using the rank for the height, i.e., for the z-coordinate. The points of the
same rank are arranged around a circle on a plane parallel to the x–y plane. We
now place imaginary forces on the elements. Comparable elements are attracted
to each other while incomparable elements are repulsed.

These forces are applied several times in three phases. In the first phase the
repulsive force is set to be very strong; in the second phase the attractive force is
strong; and in the final phase the forces are balanced. Then an optimal projection
to two space is chosen (either by the program or the user).

4.1 The Rank Function

As mentioned above the algorithm positions the elements of the ordered set P

in 3-space and uses forces to adjust the x and y coordinates but the z coordinate
(the height) is determined by a rank function on the ordered set given by

rank(a) = height(a) − depth(a) + M

where height(a) is the length of the longest chain from a to a minimal element,
depth(a) is the length of the longest chain from a to a maximal element. M can
be any constant; it is usually the length of the longest chain in P so that the



rank of the least element of a lattice is 0. Figure 6 gives an example of this rank
function. Notice the rank function has a nice top to bottom symmetry.
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Fig. 6. The rank function for N5

The usual algorithm to find a linear extension of P (graph theorists call
this topological sorting) can be easily modified to calculate this rank function
in linear time. (See Chapter 11 of [10] for a discussion of algorithms for ordered
sets and lattices.)

4.2 Initialization and Force Scheme

We associate a point (x, y, z) in 3–space with each element of the ordered set.
The z coordinate is determined by the rank function. Initially the points of the
same rank are arranged with equal spacing (actually a slight perturbation is
added to avoid unstable equilibria) around a circle on a plane parallel to the x–y

plane with radius equal to the number of elements of that rank.
Then forces (with heavy damping—imagine the points lying in a thick syrup)

are repeatedly applied to the points. Each point is attracted to the points it is
comparable with. If the point has coordinates (x0, y0, z0) and is comparable with
a point with coordinates (x1, y1, z1) the force on the first point is

catt〈x1 − x0, y1 − y0, 0〉

If these two points are incomparable they are repulsed. The force on the first
point is

crep〈x0 − x1, y0 − y1, 0〉

|(x1 − x0)|3 + |(y1 − y0)|3 + |(z1 − z0)|3

Note the attraction of two comparable elements does not depend on the z–
coordinate while the repulsion does. In both cases the force is in the x–y plane so
that the z–coordinate remains fixed. The attraction is similar to the attraction
of a spring (Hooke’s Law) with natural length 0. But since the z–coordinate is
unchanged the distance between the two points is always at least |z1 − z0|. Also
note that the attraction is not just between elements and their upper and lower
covers (neighbors) but between all pairs of comparable elements and does not
depend on z1 − z0. The repulsion force uses an inverse square law and it does
depend on the z–coordinate.



4.3 Iteration

The total force on each node is calculated and all of the nodes are moved. This
process is iterated until the diagram becomes stable. Of course the attraction and
repulsion can be modified by changing catt and crep and the current algorithm
goes through three stages: first with the repulsion force strong (that is crep large),
then with the attraction force strong and finally with balanced forces.

Finally a projection of the form 〈x, y, z〉 7→ 〈x cos θ +y sin θ, z〉 into the plane
is chosen. θ can be chosen to maximize some niceness criterion or the user can
rotate the picture to find a pleasing projection.

4.4 Comparisons

While the results of this algorithm do not match the quality of hand drawn
diagrams they are at least recognizably the same and often close to being æthet-
ically pleasing. For lattices with 10 or less elements the result is usually very
close to the hand drawn version.

To illustrate the difference we have taken three figures (Figure 1.1, Figure
1.17, and Figure 1.25) from [11], and reproduced them along with the diagram
drawn by the program in Figures 12, 13, and 14. The first two, while far from
perfect, are easily recognized. The third one, Figure 14 is particularly interesting
because the computer generated diagram is actually the way it is usually drawn;
see, for example, Figure 1 of Knuth [15]. It better shows off the symmetry of the
lattice. The diagram from [11] also has some obvious pluses.

5 What is a ‘Nice’ Diagram?

There is a large body of work on graph drawing. The Hasse diagram is a very
restricted type of graph diagram: the edges must be straight lines and vertical
coordinate must agree with the order (greater elements of the ordered set must
be higher in the diagram). Since our goal is to really picture the lattice, we
rarely diagram lattices with more than 50 elements so asymptotic results are
not always relevant. Nevertheless there are results of interest to lattice drawing.
We discuss one: minimizing the number of edge crossings.

5.1 Edge Crossings

Finding a diagram with the minimum number of edge crossings is NP–hard as
was shown by Garey and Johnson [13]. In [9] P. Eades and N. Wormald showed
that the problem of minimizing the edge crossings in a bipartite graph where
one of the layers has a prescribed order is also NP–hard. It is easy to see that
these results imply that the problem of minimizing crossings in an ordered set is
NP–hard. However this does not immediately imply that the crossing problem



for lattices is hard.3 It was Ivan Rival who brought the crossing problem for
lattice to my attention. While the result of Garey and Johnson can modified
in a straight-forward way to apply to lattices, extending Eades and Wormald’s
result takes more care. We outline how to do it here. Stating the problem:

Decision Crossing Problem for Lattices (DCPL)

Instance: A lattice L, an ordering on the atoms of L and an integer M .

Question: Is there a diagram of L, that is, a map from the elements of L into the
plane, such that the vertical coordinates are given by the rank function and the
left to right order of the atoms determined by the horizontal coordinate is the
given ordering of the atoms and such that the number of crossings is at most M?

Theorem 1. DCPL is NP–complete.

Proof. The problem is clearly in the class NP. The proof that it is NP–complete
follows the proof of Theorem 1 of [9] so we will only point out how to modify
that theorem to prove this theorem. To prove this problem is NP–complete we
give a polynomial-time reduction to the following known NP–complete problem:
given a directed graph D and a positive integer K is there a set of at most K

arcs whose removal would make D acyclic? This is known as the Feedback Arc
Set problem and is NP–complete; see p. 192 of [12].

So let D = (U, B) be a directed graph with vertex set U = {u1, . . . , un} and
arc set B and let K be a positive integer. For each arc a = (ur, us) ∈ B let C(a),
let the “clump” associated with a be the set

C(a) = {ca
1 , c

a
2 , c

a
5 , c

a
6} ∪ {ca

3,i, c
a
4,i : 1 ≤ i ≤ n, i 6= r, s}.

The atoms of L consist of the union of the C(a)’s. The left to right order of
these atoms keeps the elements of each clump together and within a clump the
order is the order on the first index and within the ca

3,i’s on the second index
but for the ca

4,i’s it is the reverse order of the second index.
The coatoms of L are the elements of U . If a = (ur, us) ∈ B then in L

ca
1 , c

a
5 < ur

ca
2 , c

a
6 < us

ca
3,t, c

a
4,t < ut for t 6= r, s

Since each atom has exactly one upper cover under this order, L is a lattice once
we add a least and greatest element.

Let x(ui) be the x-coordinate of ui in a Hasse diagram of L. This determines
a (left to right) order on the coatoms since the rank of all the coatoms is the

3 Satisfying the lattice axioms places strong restrictions on a ordered set. While the
diagram of an ordered set with n elements can have as many as n2/4 edges, that of
a lattice can have at most n3/2; see [10].



same. Let B′ denote {(ui, uj) ∈ B : x(ui) > x(uj)}. Letting β = |B|, the number
of crossings in the diagram is

4

(

β

2

)(

n

2

)

+ 2β

(

n − 2

2

)

+ 4β(n − 1) + β + 2|B′|

The proof of this is similar to the proof of Lemma 1 of [9]. For example, if
a = (ur, us) and {i, j}∩{r, s} = ∅ then, because of the reverse order of the ca

4,k’s,
there there are 2 crossings of the 4 edges from ui and uj into C(a) regardless of
whether i < j or not. These crossings give rise to the 2β

(

n−2

2

)

term.
Of course the graph (U, B−B′) has a linear extension and so is acyclic. Thus

there is a set of K arcs of D whose removal makes it acyclic if and only there is
a left to right ordering of the coatoms of L so that the diagram of L with this
layout of the coatoms has at most

4

(

β

2

)(

n

2

)

+ 2β

(

n − 2

2

)

+ 4β(n − 1) + β + 2K

crossings. Thus DCPL is NP–complete.

5.2 Heuristic Niceness

Of course I am more interested in a useful tool than in theoretical results about
diagrams (which is also the goal of FCA) and so tend to concentrate on heuris-
tics. What constitutes a “nice” diagram is, of course, a question of æthetics,
not mathematics. R. Wille and his colleagues at Darmstadt suggested various
criteria. One was minimizing the number of different slopes of the edges. Look-
ing at the diagrams in this paper we see that this is very important. But it is
interesting to note that some minimum slope diagrams can be bizarre. Figure 7
from [25] shows an Escher-like diagram of the 8-element Boolean algebra.

Fig. 7. An Escher-like diagram of the eight element Boolean algebra.

In [11] this idea is refined into two rules: the rule of parallelograms and the
rule of lines. While the algorithm we presented does not follow these rules, it
often produces diagrams that approximate them.

In [2] the authors present an algorithm for minimizing total length of the
edges when the elements are restricted to lie on a grid which produces nice
results.



6 Software

Our algorithm was originally implemented in Lisp, but in 1996 we converted it
to a Java applet; see http://www.math.hawaii.edu/∼ralph/LatDraw/. It has
been used as a component in several other programs:

• JavaMath, a web based application using the applet to draw lattice (partic-
ularly subgroup lattices) directly from Maple and GAP.

• Universal Algebra Calculator, an application for universal algebra incorpo-
rating our program to draw congruence lattices.

• JaLaBA, Java Lattice Building Application. This allows you to enter your
own formal context and it will generate the lattice.

There are more details on the site above.
We are presently reconstituting our program as a component which can be

easily plugged into other programs. The goals of the new program include:

• Bring the Java up-to-date: the original applet was written in the first Java
(version 1.02) and as such uses the old event model and does not use Graph-
ics2D.

• Add new, often requested, features such as dragging the elements, interval
viewing, saving in various formats, printing.

• Two way communication between the component and the client program
using it: the program would be aware of events in the component so, for
example, it could display information about a node when the user clicks it.
In the other direction, the program can request that the component change
the color of certain elements in the lattice based on a user’s gesture in the
program. At the programming level, there will be higher level events so, for
example, the program will be able to listen for higher events such as “vertex
clicked” or “edge clicked” rather than just mouse clicked.

I plan is to make this open source and to put it on sourceforge.net. Sample
programs using the drawing component will be included.
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Appendix A: More Diagrams

Fig. 8. FM(3) and the lattice freely generated by M3 and two extra ordered elements
below a generator.

Fig. 9. The congruence lattice of the free algebra on one generator in Polin’s variety.



Fig. 10. FM(2 + 2) and FL(2 + 2).



Fig. 11. Nation’s example of a finite semidistributive lattice which is not a bounded
homomorphic image of a free lattice and its W–cover

Fig. 12. Left: Figure 1.1 of [11]. Right: as drawn by the program



Fig. 13. Left: Figure 1.17 of [11]. Right: as drawn by the program

Fig. 14. Left: Figure 1.25 of [11]. Right: as drawn by the program


