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THE VARIETY OF MODULAR LATTICES IS NOT
GENERATED BY ITS FINITE MEMBERS
BY
RALPH FREESE'

ABSTRACT. This paper proves the result of the title. It shows that there is a
five-variable lattice identity which holds in all finite modular lattices but not
in all modular lattices. It is also shown that every free distributive lattice can
be embedded into a free modular lattice. An example showing that modular
lattice epimorphisms need not be onto is given.

We prove the result of the title by constructing a simple modular lattice of
length six not in the variety generated by all finite modular lattices. This
lattice can be generated by five elements and thus the free modular lattice on
five generators, FM (5), is not residually finite.

Our lattice is constructed using the technique of Hall and Dilworth [9] and
1s closely related to their third example. Let F and K be countably infinite
fields of characteristics p and g, where p and ¢ are distinct primes. Let L, be
the lattice of subspaces of a four-dimensional vector space over F, L, the
lattice of subspaces of a four-dimensional vector space over K. Two-dimen-
sional quotients (i.e. intervals) in both lattices are always isomorphic to M,
(the two-dimensional lattice with w atoms). Thus L, and L, may be glued
together over a two-dimensional quotient via [9], and this is our lattice.
Notice that if F and K were finite fields we could not carry out the above
construction since two-dimensional quotients of L, would have p” + | atoms
and those of L, would have ¢™ + 1, for some n, m > 1. However these
numbers are never equal. To some extent the proof is based on this fact.

We prove our result by letting f be a homomorphism from a modular
lattice M onto our lattice L. A great deal of the structure of L can be pulled
back through f into M. We then assume M is residually finite and using von
Neumann’s theorem arrive at a contradiction similar to the one described
above. K. Baker [1] and R. Wille [20] have constructed varieties of modular
lattices not generated by their finite members. Using a lattice constructed by
E. T. Schmidt [18] the author has shown there is a variety of modular lattices
not even generated by its finite dimensional members [6]. However, Schmidt’s
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lattice and the one used by Baker are in the variety generated by all finite
modular lattices.

The result of this paper contrasts with R. A. Dean’s result that the variety
of all lattices is generated by its finite members [3].

The first section of the paper studies (von Neumann) n-frames in modular
lattices. The concept of an n-frame of characteristic p is introduced. It is
shown among other things that n-frames of characteristic p are projective in
the sense that they may be pulled back through homomorphisms. The results
of this section will be used in a subsequent paper to show that the lattice of
subgroups of the n-fold direct product of Z,, L(Z), is a projective modular
lattice if 4 < n < w and p is a prime. The second section constructs the lattice
L and shows that it is not in the variety generated by the finite modular
lattices by the method outlined above.

Bjarni Jonsson has asked if there are any uncountable distributive
sublattices of free modular lattices. (Recall that the distributive sublattices of
free lattices are at most countable [7].) In the third section we show that for
every infinite cardinal k, there is a quotient sublattice (= interval) of FM (k)
which is distributive and has cardinality k. The lattice L was originally
constructed with this application in mind. In this section it is also shown that
modular lattice epimorphisms, defined as in category theory, are not onto. A
method for obtaining a five variable lattice identity holding in all finite
modular lattices but not in all modular lattices is outlined.

In this paper we use the plus sign for the join operation and juxtaposition
or dot for the meet operation, since this reduces the apparent complexity of
the lattice terms. Notice that von Neumann alternated between both sets of
symbols [19, p. 137). If @ > b in a lattice L, we let a/b = {x € L: b < x <
a} and call a/b a quotient or quotient sublattice of L (alias interval). We say
a/b transposes up to c¢/d if a+ d=c and ad = b. This is denoted
a/b 7 c/d and we also write c/d Ny a/b. The quotients a/b and c¢/d are said
to be projective if they are connected by a finite sequence of transposes. If
a/b 2 c/d, then a/b is isomorphic to ¢/d via the map x+ x + d. The
inverse map is y+>ya, see [2].

This paper contains some lengthy calculations. The technique usually
involves first introducing an extraneous term using, for example, that if a > b
then @ + b = a. Then the modular law is applied and then previously
established relations are applied. Justification is usually given for steps which
are not part of the above scheme.

1. Von Neumann n-frames. Let L be a modular lattice. We say that L
contains an n-frame if there exist a;, . . ., a,, ;2 €13, - - . » €1, € L such that
(i) the sublattice generated by a,, ..., a, is the Boolean algebra 2" with
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atoms a, . . ., a,, and (i) a; + ¢;; = a; + ¢; = a; + a; and a,c|; = gi¢|; =
a,a;. In this situation we shall simply say that {a;, ¢|;} is an n-frame in L. We
also allow the one element lattice to be a ‘degenerate’ n-frame. We let 0
denote the least element of this Boolean algebra, i.e., 0 = a,a, and we do not
insist that O is the least element of L. We let P(n) denote an n-frame as a
system of elements and relations and we let FM (P (n)) be the modular lattice
freely generated by a,, . .., a,, ¢, - . . , ¢, Subject to the relations described
above which make {a,,...,q,, ¢ .-.,¢;,} an n-frame. A great deal of
information about n-frames is contained in [19], [15], [10], [11], [12].

EXAMPLE. Let R be a ring with 1 and let i R" be the n-fold direct product

of n copies of R as a left R-module. Let L(zR") be its lattice of submodules.
Let

a,=1{0,...,0,%0,...,0:xER}=R(0,...,0,1,0,...,0),
¢ =RO...,—1...,1,...,0) € L(xR").

One easily checks that {a;, c|;} is an n-frame in L(zxR") and that the c; satisfy
(1.1) below.

Let {a,cy; i=1,...,n j=2,..., n} be an n-frame in a modular
lattice L. Let ¢;; = ¢y; and for 1,4, distinct let ¢; = (¢}; + ¢;)(a; + a). In
Lemma 5.3 of [19, p. 118], it is shown that, for distinct i, j, k,

i = (¢ + )@ + ). (L.1)

In the definition of an n-frame the index 1 plays a special role. However, by
(1.1), we see that this apparent lack of symmetry is only illusionary.

There are several concepts closely related to n-frames (cf. [10]). For
example, a modular lattice is said to contain an (n — l)-diamond if it
contains 2" with atoms q,,...,a, and an element y which is a relative
complement of each q; in @, + - - - + a,/a,a,. This concept was introduced
by A. Huhn [11). If {a,,...,a,y} is an (n — 1)-diamond in a modular
lattice L, then {a, c|;} is an n-frame, where c;; = y(a, + a). Conversely if
{a, ¢y} is an n-frame in L then {a,y} is an (n — 1)-diamond, where
y = Zj.; ¢y [10].

LemMA 1.1 (HERRMANN AND HUnN [10]). Let {a;, c|;} be an n-frame in a
modular lattice L. Let b, € L satisfy a,a, = 0 < b, < a,. Define b; = (b, +
c)a; and b =37_| b. Then {a, c;} and {a], c{;} are both n-frames in L
where a/ = a, + b, ¢|; = ¢;; + b, a/ = b, and c{; = bc,;. Moreover, in the
primed frame, cj;, which is defined to be (c}; + ¢};)(a] + a)), is equal to ¢; + b.
Similarly ¢ = bc;.
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Proor. Using modularity and b, < g, and the independence of the a;, we
have

(a,.+b)é(aj+b)=b+a,.(2 aj+b)

j=1 J#i
J#Ei
=b+a,.(2 aj+b,)
J*i
=b+bi+a,.(2 aj)
J#i
= b.
Hence {a; + b: i = 1,..., n} are independent over b and thus generate 2".

Now notice that, fori # 1,
b + ¢y = ¢y + a(by + ¢y)
= (ci; + @) (b, + ¢y)
= (c; + a)b, + ¢y
= (a, + a)b, + ¢,
= b, + cy; (1.2)
Using (1.2) we obtain the following for i, j, 1 distinct:

b+ c; =b + (cu + cy)(a + a)
= (b, + c); + ¢)j)(a; + @)
= (bl toc;t clj)(ai + aj)
= (bj toc; t clj)(ai + aj)
= b + ¢;. (1.3)

For i # 1 we have

(a; + b)(c;; + b) =b + a(c; + b)

=b+ aa, + a,.)(c,,. +b,+b+ bj)
J#Li

=b+a,.(c1,.+bl+b,.+(al+a,.) 2 bj)
J#*=1,i

=b+ b+ afc; + b))

=b+ b, + b =0b.
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Using (1.2) we have
(a; + b)(c;; + b)=b + a;(c;; + by + b)
=b+ a(c,; + b))
=b+ b, +ac,;=0>

Clearly a; + c}; = a/ + ¢|; = a} + a] and thus {a], ¢};} is an n-frame. It is
also clear that {4} = {b,} is independent over 0, and calculations similar to
those above complete the proof that {4/, c{;} is an n-frame.

Let i, j, 1 be distinct. Then by definition ¢; = (¢}, + ¢};)(a/ + a)). By (1.2),
b, < b, + c,;. Thus

c; = (cy + c; + b)(a; + a; + b)

= b+ (c; + ¢, + b)(a; + a)

=bh+ (cl,. + ¢ + > b,()(a1 + a; + a)(a; + a)
k=1

=b+ (c“ +c,+b +b+b+ ( > bk)(az1 +a + aj))(a,- + a)
k#1,i,j

=b+(c; +c,+ b+ b)(a+ a)
=b+b,.+bj+(c1,.+c1j)(a,-+aj)
=b+ ¢

Similar calculations show that ¢;; = bc;, completing the proof. []

Let {a, c|;} be an n-frame in a modular lattice L, n > 3. Then for i, j, k
distinct we have the following projectivity:

a+a/07a+a+a/agNc; + a/0
e+ a+ a/c;Na + a0 (1.4)
This projectivity defines an automorphism a;; of a; + g;/0 given by
a(x) = ((x + a)(ex + @) + 64 + a). (15)

The above formula is a special case of von Neumann’s addition defined on
p. 142 of [19]. In fact, a;(x) corresponds to “adding one” to x. By Lemma 7.8
of [19], a;; is independent of the choice of k distinct from i and ;.

Let b,i=1,...,n, and b be the elements of L given in Lemma 1.1 and
let {4/, c};} be the frame given by that lemma. Let aj; be the automorphism
corresponding to a;; using the primed frame; that is

aj(x) = ((x + G)(ci + &) + )@ + ).
Let 0' = b.
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LEMMA 12. If x € a; + a;/0, then x + b € a] + a//0 and aj(x + b) =
a;(x) + b.

Proor. First we show for distinct i, j, k that
(x + @ + b)(cy +a;+ b) =b + (x + a)(cy + a).
Using b, < b, + ¢, we calculate
(x+ a + b)(cy + g+ b)=b+ (x+ a + b)(c + a)
=b+(x+a +b)a + a+ a)(cy + a)
=b+(x+a + b + b)(cy + a)
=b+(x+a +b)cy+a)+ b
=b+ (x+ a + b)(cy + b + a)(cy + a)
=b+ (b + (x + q)(cy + by + a))(cy + a)
=b+ (b + b + (x + a)(cy + a))(cu + a)
=b+ (b + b)(cu + @) + (x + a)(cy + a)
=b+ (x + a)(cyx + a).
Using this and b, < b; + ¢ and letting w = (x + a;)(c; + a;) we see that
ai{x + b) =[(x + @ + b)(cy + @+ b) + ¢z + b](a; + a; + b)
=[(x + a)(cp + @) + ¢ + b](a,. +a + b)
=b+[(x + @)(cy + a) + c;|(a, + a, + b)
=b+(w+ cp)a + g + q)(a + a + b)
=b+(w+c)(a+a+b)
=b+ (w+g)(w+ e+ b)a +a+b)
=b+(w+ )b+ (a+ a)(w+ ¢y + bj)]
=b+ (w+ )b+ b+ (a+ a)(w+ )]
=b+ (w+ )b + b))+ (a+ a)(w+ )
=b+ (a; + aj)(w + cjk)
=b+ ai(x). O

Again maintaining the notation of Lemma 1.1, we let a; be the

automorphism of a” + a /0 obtained from a; by doubly priming everything.

LeMMA 1.3. If x € a; + a;/0, then xb € a + a /0 and &j(xb) = ba;(x).
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ProoF. First note that
xb = x(a;+ a)b=x(b;+ b)< b+ by=a +a.
Now
b(ca + @) = (b + b + b)(cu + a)
= b+ (b + b)(a + a)(cy + @)
b + (b + b)(cu + (@ + a)a)
= b, + (b + by)cy

J

Furthermore

b(x + @) = (b, + b, + b)(x + @)
= b+ (b + bj)(ai + a)(x + a)
= b, + (b, + b)x
= b, + bx

= bx + a.

Let w = (x + g)(ci + a) as before. Since b; + b, = b; + bcy, w < a; + ¢y,
and ¢y (a; + c;) = 0, we have

b(w + ¢i) = (b, + b + b )(w + ¢;)
= (bey + b + bey)(w + c)
= bc, + (bcy + b)(w + ci)
= bey + (bey + b)(a; + ci)(w + i)
= bcy, + (b; + bcy)w
< bey + bw
< b(w + ¢).
Hence we have equality all the way across. Thus
af(xb) = ((xb + by)(bcy + b)) + be)(b; + b))
= b((x + a)(cy + @) + ¢i)b(a; + a)
= ba;(x). O

LemMA 14. a;(a) = ¢; and a;(a) = a;. Consequently, if x is a relative
complement of a; in a; + a;/0, then so is a,(x).
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PRroOOF. This follows from easy calculations. []

Let {@; c;;:i=1,...,n,j=2,...,n} bean n-frame in a modular lattice
L,n > 3, and let r be a natural number. We say that {a;, c,;} is an n-frame of
characteristic r if aj,(a;) = a, where a, is given in (1.5) and a7, is «a,, iterated
r times.

ExampLE. In L = L(xR") it is easy to see that the submodules
R(—1,¢0,...,0)correspond in a one-to-one fashion to the elements of R.
By elementary linear algebra, a;,,(R(—=1,40,...,0) = R(—-1,t+
1,0,...,0). Sincea; = R(—1,0,...,0), the equation aj,(a,) = a, holds in
L if and only if r divides the characteristic of R.

Now let {a;, ¢|;} be an n-frame in an arbitrary modular lattice L and let r
be a natural number. Let b, = a,(aj,(a;) + a,) and let

by=a(b,+cy), b=a(b +cy), i=3...,n
Note that b, = a,(b, + ¢,,) as
ay(by + c1p) = ay(ay (b, + cpp) + ¢py)
= ay(a; + cpp)(by + ¢1p) = ay(by + ¢1y) = by
Let b = S"_, b,

LemMMA 15, Let {a,c\;} = {a + b,c; + b} be the n-frame given by
Lemma 1.1 using the b defined above. Let aj, be the automorphism (1.5)
obtained by using the frame {aj, c;}. Then

(@) (a) = a}.
PrOOF. By Lemma 1.2
(1) (ar + b) = aiy(a) + b

= afy(a;) + b + afajy(a)) + a))
= (ai(a) + a))(afz(a) + a)) + b
= (a; + a))(afz(a) + a)) + b
=ap(a) +a, +b

since a,(a;) + a, = a,; + a, by Lemma 1.4. However,

a; + by = (a, + ay)(a; + af3(a))) = a; + af3(ay).
Thus a; + b > ajy(a,;). Hence (a},) (a)) = a, + b = a}, as desired. []

THEOREM 1.6. Let M and L be modular lattices and let f be a homomorphism
from M onto L. If {a;, c\;} is an n-frame of characteristic r in L, then there is
an n-frame {a;, ¢,;} of characteristic r in M such that f(a;) = a; and f(c;) = c;,
ij=1,...,ni%j.
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ProoOF. The corresponding result for n-frames (without regard to
characteristic) was proved by Andras Huhn [11] (a proof is also given in [5]).
Using this result we see that there is an n-frame {a;, c¢|;} in M such that
f(a) = a; and f(c;) = ¢;. Let a;, be the automorphism of a, + a,/0 given by
(1.5) using the frame {a, c|;}. Define b, = ay(ajy(a,) + a;) and

b= a(by+ ) b=a(b+ég) i=3....m b=3 b
j=1

By Lemmas 1.1 and 1.5, {@, + b, ¢,; + b} is an n-frame of characteristic r in
M. Since {a;, c|;} has characteristic r by hypothesis,

f(b—z) = f((&er(dl) + ‘71)‘72) = (af(a)) + a)a, = (a, + a,)a, = 0.

Since b, / 0 is projective to b, / 0in M, f (b_,.) = 0. Thus f(b) = 0. Consequently,
f(@ + b) = g, and f(¢; + b) = ¢, proving the theorem. []

THEOREM 1.7. Let {a;, c;} be an n-frame in a modular lattice L. Suppose
0< b, <c¢ < a,. Let

b, = a;(b, + cy;), ¢ = a(c; + cy), i=2...,nm
b=2i_1b, c=2}_,¢;. Then {ac + b,c;jc + b} is also an n-frame.
Moreover, if {a;, c\;} is an n-frame of characteristic r, then so is {a.c + b, c|;c
+ b}. Furthermore
a, +a, /0D ¢; + ¢,/b; + by 7c(a; + b) + c(ay + b)/b

/'c/z clag+b) 2y +c,+ X a/b+ b+ a,.gl/z a;.
i=3 i=3 i=3 i=3

PRrOOF. Since (¢, + b)c = a;c + b = ¢; + b, (¢; + b)c = ¢;c + b, the first
statement follows from two applications of Lemma 1.1. If {a, c|;} has
characteristic r, then so does {ca;, cc;;} by Lemma 1.3. By Lemma 1.2
{ca; + b, cc); + b} has characteristic r as well. Straightforward calculations
establish the last part of the theorem. []

2. The main result. Let F and K be countably infinite fields with char F =
p and char K = ¢ for distinct primes p and q. Let L, = L(zF “) be the lattice
of subspaces of the F-vector space F*. Similarly L,= L(xK*%). L, contains
the n-frame described in the example of §1. Namely, let g, € L, i=
1,2, 3,4, be the subspace of vectors which are zero in every coordinate
except possibly i. Let ¢;, i,j =1,2,3,4, i #j, be the subspace of those
vectors which are zero in all coordinates except i and j and whose coordinates
sum to zero. Thus c,, is the subspace generated by (—1, 1, 0, 0). Let ], c; be
the corresponding elements in L,. It is easy to see that {a;, ¢;} is a 4-frame of
characteristic p and {4/, c};} is a 4-frame of characteristic ¢. Since |F| = |K]|
= w, the two-dimensional quotient sublattices a, + a, + a; + a,/a; + a4 of
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L, and a; + a5/0 of L, are both isomorphic to M, (the countable two-
dimensional lattice). Let o be a lattice isomorphism from a, + a, + a; +
a,/a; + a, onto a; + a,/0 such that

o(a, + a, + a; + a,) = ai + a3,
o(a; +a,) =0,
o(a, + a; + a,) = aj,
o(a, + a; + a,) = a),
o(cy, + a5 + a,) = ¢, (2.1)

(The first two equations must hold.) Our lattice L is defined on the disjoint
union of L, and L,. The order on L is the transitive closure of the order on
L,, the order on L, and the order x < a(x), x € a; + a, + a3 + a,/a; + a,
It is easy to see that x < y holds in L if and only if x and y are both in L, or
L, and x < y holds there,or x € L,,y € L, and thereisaz € a, + a, + a4
+ a,/a; + a, such that x < z and 0(z) < y.In L we let
l=a,+a,+ a3+ a, l"=a};+ a; + a5 + a,,
0 = aja;, 0= aa,.

Note that 0 is the least element of L and 1’ is the greatest. Also note that
1/0=1L, and 1I'/0’ =L, in L. Let 6 be the congruence generated by
{(x, 6(x)): x € 1/a; + a,}. L/8 is the lattice obtained from L by identifying
x and o(x), i.e.,, L/8 is the lattice obtained from L, and L, using the usual
Hall-Dilworth construction. The reader can check that L /8 is a simple lattice
of length six. Moreover L is a subdirect product of L/# and the two element
lattice. Thus, once we have shown that L is not in the variety generated by
finite modular lattices, it will follow that L /8 is also not in this variety.

FIGURE 1
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The sublattice of L generated by {a;, aj: i = 1,2, 3, 4} is a finite distribu-
tive lattice D, diagrammed in Figure 1.
Notice that 1/a; + a, 7 a} + a,/0'.

THEOREM 2.1. L is a modular lattice not in the variety generated by all finite
modular lattices.

PrOOF. L is a modular lattice by [4] and [9]. Let 9N, be the class of all
finite modular lattices. By Birkhoff’s theorem the variety generated by 9N, is
HSP(9,), the class of all homomorphic images of sublattices of direct
products of lattices in M. If L € HSP(IM,), then there would be an
M € SP(9;) and a homomorphism from M onto L. We will show that this
1s impossible by showing that whenever M is a modular lattice mapping
homomorphically onto L then M is not residually finite (= a subdirect
product of finite lattices). Of course, M € SP(N;) implies M is residually
finite.

Thus we suppose M is a modular lattice and f is a homomorphism from M
onto L. Most of this section will be occupied in showing that a great deal of
the structure of L can be pulled back through f into M. To begin with we
note that the sublattice D of L diagrammed in Figure 1 is a projective
modular lattice. This follows from Mitschke’s and Wille’s result that a finite
distributive lattice is a projective modular lattice if the join-irreducible
elements are closed under meets and the partially ordered set of these
elements contains no crown [17]. Alternately D is a direct product of the four
element Boolean algebra and the lattice diagrammed in Figure 2.

FIGURE 2

It is easy to see that both these lattices are projective modular lattices and
that the class of finite projective modular lattices is closed under finite direct
products [5]. Hence there exist @; and a@; in M, i = 1, 2, 3, 4, which generate a
sublattice isomorphic to D and such that f(a;) = g, and (@) = a/. In L, C L
we lete’ = 3, .c;.. Notice that

e = {(Ul’ 0y, U3, 04) S K4I (2] + U, + U3 -+ Uy = 0}
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and that ¢ is a relative complement of a/ in a} + a5 + a} + a;/0, i =
l,...,4, and that¢; = ¢'(a/ + a)), i # j. Choose & € M such that

0V=aa<eé<a+a+a+a,
and f(&') = . Set b’ = 34_,a@, ¢ = I*_ (@ + &), and

4 4
d=3(q+b)=b+3 ac.
i=1 i=1
It is shown in [5] using straightforward calculations that {7/¢" + b, 1<
4} generates a copy of 2* with »' and d’ as least and greatest elements
respectively. Since a/e¢’ = 0" in L, f(a/e’) = 0’ and thus f(b") = (/. Similarly
f(c’) = 1" and hence f(a/c’ + b) = al, i =1, 2, 3, 4. Moreover, it is shown
that &'d’ is a relative complement of each @& + & in d’/b’. Furthermore,
f(¢d’) = €. Hence if we define ¢}, = (aj¢ + a/¢’ + b')e'd’, then it is easy to
calculate that f(¢};) = cj; and that ¢); is a relative complement of @;¢" + b’
and @¢ + b in a/¢’ + a¢ + b’/b'. Consequently {@&’ + b’} U {&}} forms
a 4-frame mapping to {a;, c};} under f.

Now consider the elements a,d’ + (a, + ay)b’, a,d’ + (a, + ay)b’, a; + (a,
+ a,)b', a, + (a, + a,)b’. Since f(b") = 0, these four elements map under f
to a,, a,, a;, a,, respectively. Since d <&, a, + a, < 0<¥b, a <a,a, <
a@, and {a@/c’ + b, &} is a 4-frame, we have

(a,d" + (@, + &)b)(ad’ + @5 + @, + (@, + 3)P)
< (@@ + b)(ae + b)) = b
Since the left-hand side is less than or equal to @, + a,, it is less than or equal
to (a, + a,)b’. But the other inequality is obvious. Now
(@, + (a, + @)b)(ad + ad + a, + (@, + @,)b)
= (@, + )b’ + &(ad’ + &d + &, + (a, + 3,)b)
= (a, + a,)b,

since a,d’ + a2d +a, + (a + az)b < a; + a, + a,. These calculations
show that a,d’ + (a, + a))b', a,d' + (a; + @)V, a; + (a; + a)b', a, + (a,
+ a,)b’ are independent over (a, + a,)b’, and hence generate a copy of 2*.
Moreover,

(a,d" + &,d' + @y + @y + (a, + @)b) + b = ad + &d + .
Clearly the right-hand side is larger, but

ad + b > ad +0 =(a, +0)d = ad,
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from which the opposite inclusion follows. Now
(a,d" + ayd' + @y + @, + (a, + @) B )P
=a,+ a, + (@ + &)o' + (a,d + ad' )b’
=a, + a, + (a, + a,)b'.
Consequently,
ad + ayd + ay+ ay+ (a, + a)b'/ay + a, + (a, + )b’
rad +ad + b/ =ad +ae +b/b.
Here we have used a;¢’ = a,d’ which follows easily from the definitions (cf.
[S]). It now follows that the sublattice of M generated by {a/c’ + b} U
{ald + (a, + az)b a2d + (a, + a2)b a; + (a, + a2)b a, + (a, + a)b’}
1s the lattice D diagrammed in Figure 1.

Thus, changing notation, we see that there exist {a;} U {a} U {¢;} C M
such that

f(@)=a, f(@)=a, f(G)=23

and {a, cy;} is a 4-frame, and {a, a/} generates D. Let aj, be the

automorphism of a; + a, /0 given by (1.5) relative to the frame {a, ¢ ;) Let
by = axa; + aii(a))) and

_ _ 4

by = aj(by+ ¢,), b =a(bi+ey), b=2X

i=1

b..
Then by Lemma 1.5 {@ + &, &}, + b’} forms a 4-frame of characteristic g.
Since the frame {aj, c¢j;} in L has characteristic g, it follows that f (b) =(
and thus

f(@+0)=a, f(G+b)=

Moreover f(a;, + (a; + a))b’) = a;, i = 1,2, 3, 4, and calculations similar to
the above show that {g; + (a, + az)b} U {a + b’} generates a sublattice
isomorphic to D.

Changing notation again we see that there exist @], ¢, a; such that their
1mages under f are g}, c;, ; and {@j, ¢};} is a 4-frame of characteristic ¢, and
{a/, a;} generates a copy of D.

Slnce 3t oy < ay + a3 + a,, it is possible to choose e ¢ € M such that
f(é) =cy+cy, and 0<e<a,+a, +a, Let ¢, =c)a, +a,) and
notice that f(cy,) = ¢, since c(a; + a,) = c,, by the construction of L. Let
e=cp+eleth=3%_aec=1I"_a + e and
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4 4
i=3 (a+5)%=3 az
i=1 i=1

Cij=

(ac +ac +b)ed = (ac +ac +b)e = (ac +agc)e +b.
As before {g;c + b, ¢y} is a 4-frame mapping to {a;, cy;} under f. Easy

calculations show that
ac+ac+b/b ndjac+ac+b »d+0/b+0
=a,c+a, +0/ae+a,e+0
ca + a)0.

This last quotient is illustrated in Figure 3.

Note that
Gt 0 = @ + @) + 0 = G, + & + 0) = 8@ + &) = &z
Also

@, + ¢y = a, + (@ + @) = (@, + &)@, + a@)

+ 0 + &)@, + @) = (@ + @&)(a@, + @) = a, + @,

a;
(#
Similarly a, + ¢}, = a;, + a,and a,c;, = 0 = a,c,,. Nowsince ¢, < e,

cptae= (c12 + al)e= (012 + az)e = ¢, + a,e.

Similarly, since ¢;, < € < ¢,

512 + 516 = 0_12 + 526_'.
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Define b = aje + 0, b} = aj(b| + ¢},), ¢, = a)c + 0, & = a(c; + ).

. > — 4
Then, since ¢, = 0’ + ¢,

by = ayae +0 + &) = @(ae +0 + ¢,,)
= &(3,e +0 + 2,) = &(a,¢ + )
= a,¢ + ¢, = a,e +0.
Similarly
&= a, + 0.
Let b' = b + by + by + b}, & = ¢} + & + & + &, By Theorem 1.7 {&/¢’
+ b, ¢;,¢' + b’} is a 4-frame of characteristic g. Moreover

d/ae +ac +b aid + a + b /b, (22)
(Gc+b)+b =ae+b, i=12, (2.3)
Cpt b =2, + b (2.4)

To see these first note that
@¢ = a(ac+ac+ 0 + &+ ) =ac+0,

since a,c + ¢; + ¢4 < a; + a3 + a,. Similarly aj¢’ = a,c + (. Thus, since
axc + a,;c < b

4 4
d+b =23 act+b =73 ac+0+ ¥

Q)
o
I
Q)
~
'_.Q\
+
[
N~
~_
8
LY
+
R
|
+
=]
+
N
+
o~
F
j

3,€ + (@€ +ay¢ +a5¢ +a,c)0

3,8 + (a,C +a,0)0 + @, +a,c

I
8
0
+ + +

0+ b =ac + b, (2.3) holds. Now, since

Since ¢+ b + b’ = ac ;

+
e<a,+a+aande<é<q
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¢y = (a4, +a,)e +b

= (@€ +&0)(@ + &) (e, + &) + b

= (4 +3,¢)(en + (@ + B)) + b

= (@€ +a&,;)(&, + @e) + b

= ¢3(@,C +a,¢) + Gy +b

< &, + b
In the last step we have used ¢}, < ¢, a,¢ + a,¢ < ¢/, and aze b<b.
Thus ¢, + b’ < &,& + b’. However {a,c + b, a,c + b ¢, and {aic’ +
b, ay¢ + b, €),& + b’} generate M, (since they are each a part of a frame).
Using (2.2) and (2.3) one can check that a,c + a,¢ + b/b » a;c’ + a,_c +
b’/ b’ with the image of a@,¢ + b equalling @/¢ + b, i = 1, 2. Thus a@;& + b,
&@e + b', ¢, + b also generates M. Since &;, + b’ < ¢},& + b’ modularity
implies they are equal, proving (2.4).

Thus changing notation again we see that there exist a;, @}, ¢;, ¢; in M with
f(@) = a;, etc., {a,c,;} a 4-frame, {a], c};} a 4-frame of characterlstlc q.
Moreover, the sublattice generated by {a;, 4/} is D by (2.2) and (2.3) and, by
(24),c;, + 0" = ¢, _

Let a;, be the automorphism of a, + a,/0 given by (1.5) relative to the
frame {a, c;}. Let

_ _ _ 4
by = &,(a, + afy(@))), by =a(b, + ¢), b=a(b,+¢,), b= g‘, b,

By Lemma 1.5 {g, + b, ¢, ; t b} is a 4-frame of characteristic p. Moreover
f@@ + by = a,, etc. Let b = b1 + 0’ b’ = a(b; + ¢,), and b’ = =4_,hl.
by +¢Ch=b+0+¢,=0b+¢,+0.

So that
by = ay(b) + ¢1;) = &b, + ¢, + 0)
=b,+0 +ac,=b,+0.
By Theorem 1.7 (with ¢, = a)) (@ + V', ¢}, ; b’} is a 4-frame of character-
istic g. Moreover
a +a,+ay+a,/a,+a,+bra,+a,+ b/
and the image of @, + @, + @, + b under th1s mapisa + b’,i=1,2.To see

thls note thata, + @, + @, + a, + b’ = a, + a, + b, since 0 < b’ and @, +
< b. Also
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(@, + @ + @y + a)b’ = (a, + @, + @ + a,)(b, + b, + b} + b))

by + by + (@, + @, + a, + a,)(a + a,)(b; + b})
=b +b,+a,+a,=a,+a,+b.
Since b’ > ' and q; + 0= a,i = 1,2, we have

a+b=a+b.

Thus with our final change in notation we have elements a,, 4], ¢;, ¢;; in M
such that f(a) = g, etc, {a, a/} generates D, {a,c,} is a 4-frame of
characteristic p, and {a;, c,;} is a 4-frame of characteristic q.

We will now show that M is not residually finite. This will be done with the
aid of von Neumann coordinatization. We now review the results from [19]
which we will require. In Part II of [19], von Neumann coordinatizes
complemented modular lattices containing an n-frame with n > 4. In the first
part of the proof he uses the lattice to construct a ring (the auxiliary ring) and
shows that it is in fact a ring with 1 (cf. [19, pp. 130-157, especially Theorem
8.4]). This part of the proof does not use complementation. Thus associated
with any n-frame, n > 4, in a modular lattice is an auxiliary ring.

Now suppose our lattice M is residually finite. Since a, a;, ¢, s C_ij are
inverse images of the cooresponding elements in L, they are distinct elements
in M. Since there are only finitely many of them, there is a homomorphism g
mapping M to a finite modular lattice 4 which is one-to-one on the set
{a;, a, EU, E’lj: i=12734 j=2,3,4}). Since g is a homomorphism
{g(a), g(cy))} is a 4-frame of characteristic p in A. The auxiliary ring defined
by this frame has for its underlying set

R = {x € 4: x + g(&,) = 2(@,) + g(a&,) and xg(@,) = 2(0)} (2.5)

(cf. Definition 6.1 and Lemma 6.1 of [19, p. 130], L; is defined on p. 95 of
[19)). If x, y € R, then their sum in R, denoted here x @ y, is defined to be

[(x + g(@))(2(a) + 2g(c1y) + (¥ + 2(€13))(2(a) + 2(a3)) ]
- (g(a,) + g(ay))

(cf. Definition 7.5 and Theorem 7.1 of [19]). The element g(a;) € R is the
null element of R and g(c,,) € R is the unit of R. Since (¢, + ¢;3)(a, + a3)
= C,3, We see upon comparing the addition in R to the definition of a;, given
in (1.5) that if x € R, ajy(x) = x ® 1. Since the frame {g(a), g(c,;))} has
characteristic p, af,(g(a,)) = g(a,). This says that R satisfies 0 =0 + 1
+ -+ 4+ 1(p I’s), i.e., R has characteristic p. Since 4 is finite, R is finite by
(2.5). This implies |R| = p”", for some n, since the underlying group of R is a
p-group. Moreover, since g(a;) # g(¢,,) are both in R, |R| > 2.
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{ 8(a)), g(cy)} is also a 4-frame in A. This frame determines a ring R’ with
underlying set

R’ = {x € 4: x + g(a) = g(ay) + g(a;) and xg(ay) = g((_)')}.

Since {g(a)), g(c};)} is a 4-frame of characteristic ¢, arguments as above
show that |R’| = ¢™ for some m.

Since {a;, a/} generates the sublattice D in M, we have the transposition
a, + a,/0 2 a, + a /0.

Thus @, + a,/0 = a; + @;,/0’ via the map x>x + 0. Note that a,—a,.
Since g is a homomorphism, x> x + g(0) is an isomorphism from g(a,) +
g(a,)/g(0) onto g(ay) + g(a;)/g(0") which sends g(a,) to g(a,). Note that
R C g(a)) + g(a,)/g(0) and R’ C g(a) + g(a’)/g(0). Checking the defini-
tion of R and R’ one sees that the above isomorphism restricted to R is a
bijection from R onto R’. Thus p” = |R| = |R’| = ¢™, a contradiction since
|R| > 2. This completes the proof.

3. Further results. If V' is a variety of lattices, we let F«(x) denote the free
“V-algebra on k generators. FL(x), FM (x) and FD (k) denote the free, free
modular, and free distributive lattices, respectively. If « is infinite note that
every proper quotient sublattice of F«(k) has cardinality «. It is not hard to
see that every proper quotient sublattice of FL(w) satisfies no nontrivial
lattice identities. The corresponding result for modular lattices is false. It is
shown in [8] that if M, is a sublattice of a modular lattice L then a/b (see
Figure 4) is Arguesian.

FIGURE 4

Hence FM (k) contains quotients satisfying the Arguesian identity. In this
section we show that FM (k) has a proper distributive quotient and thus there
are arbitrarily large distributive lattices which can be embedded into free
modular lattices. This should be compared with the result of Galvin and
Jonsson that there are no uncountable distributive lattices embeddable in free
lattices. The above result has the corollary that FD(k) is embeddable into
FM(k) for each infinite k. To see this let a/b be a proper distributive quotient
of FM(k). Let k¥ = k — (var(a) U var(b)). Then |«’| = |«| and it is not hard to
prove that the sublattice generated by {ax + b: x € «’} is isomorphic to
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FD(k). (This also follows from a more general unpublished result of Joel
Berman.) We mention one contrasting example. Let V be the variety gener-
ated by all subspace lattices of vector spaces over a fixed field F. Then the
proper quotients of F«(w) satisfy no identities other than those of V.

THEOREM 3.1. Let « be a cardinal, k > 5. Then FM (x) contains a proper
distributive quotient.

Proor. Let L be the lattice constructed in §2. We shall see below that L
can be generated by five elements. Thus let f be a homomorphism from
FM () onto L. By the proof of Theorem 2.1, with FM (k) in place of M,
FM (x) contains two 4-frames {a;, ¢,;} and {a/, c};}, the first of characteristic
p. the second of characteristic ¢ such that the sublattice generated by {a;, a/:
i=1,2,3,4}is D (see Figure 1) and ¢}, = ¢,, + aja;. Here we have omitted
the bars on a;, etc. As before we let 0 = a,a, and 0 = ajaj; but note that
neither of these elements is the least element of FM (k). We shall show that
a,/0 is distributive. If this is not the case, then a,/0 contains M; as a
sublattice. We may assume that g, is the greatest element of M; and 0 is the
least element. For if this is not the case then, using Theorem 1.7, we can
adjust the elements a;, ¢y, g/, cj; so that it is true. This type of argument was
given several times in §2 and so will not be repeated here.

Let by, bs, d,5 be the atoms of M. Thus b, + by = b, + d\s = bs + d\5 =
a,and b,bs = b,d\s = bsd,s = 0. Define b,, . . ., bg as follows

b, = a;(b, + ¢y;), i=234

bi = a,»_4(b5 + Cli__4), i = 6, 7, 8. (3.1)

It is easy to see that by, . .., bg are independent over 0. Let e = ¢, + ¢3 +
¢4 and let e* = e + d,5. As was mentioned earlier, e is a relative complement
ofa,i=123,4,ina + a, + a; + a,/0 and thus e(a, + a) = ¢, (cf. [10]).
From this one can show that e* is a relative complement of each b, in the
same quotient. If we now define dj; = e*(b; + b),i =2, ..., 8, it is easy to
see that (b, dy;: i=1,...,8,j=2,...,8} is an 8-frame. Furthermore, for
J=2,3,4,d,; = ¢,j(b, + b). To see this note since ¢;; < e < e*, d|; = e*(b,
+ b) > c,j(b, + b). However using equation (3.1) one can check that d;
and c;(b; + b)) are both relative complements of b, in b, + b;/0. Now
modularity yields d,; = ¢,;(b, + b;). From this observation and Theorem 1.7
it follows that {b,, b,, bs, by, dy,, dy3, di4} is a 4-frame of characteristic p,
since {a;, ¢,;} has characteristic p.

By Theorem 5.1 of [19, p. 127], there is a projective isomorphism from
b, + b, + by + b,/0 onto b, + b, + bs + bg/0 = a, + a,/0 (as b, + bs =
a,, b, + bg = a,). Moreover this isomorphism maps d,, to d,,, d,; to ds5, and
dy, to dig. Thus {b,, by, bs, bg, d,,, d5 dg} is also a 4-frame of characteristic
p-
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Since a,/0 7 a; /0, the elements b = b, + ajaj, bs = bs + aja;, dis = d;s
+ aja; together with a; and 0 form a copy of M,. Elements
by,...,bg df,,...,dgs can be defined in a manner similar to
by,...,bg d, ..., ds Arguments similar to those given above show that
{b1, by, bs, b, d,, d|s, di¢} is a 4-frame of characteristic q.

We claim that b = b, + O'fori = 1,2,5,6 andd;, = d|, + 0, d|s = d;s +
0, and d{s = d\s + 0. For b}, b5 and d|5 the above hold by definition. By
definition bg = (b5 + c},)a3. Thus, as 0 = (a, + a,)0,

bg = (bs+ cj, + 0)(a, + 0)
= (bs + ¢, + 0)(a; + ay)a, +
= b + 0.
Similarly b5 = b, + 0. To handle the remaining formulas we shall first prove
that d,, + d;s + d\ = ¢, + d,s. Indeed, since b, + e* = a, + a, + a; + a,,
and d15 + bl = al, b2 + b6 = a2,
=d\s + e*(b, + b, + e*(b, + b))
= dis + e*(b, + (e* + by)(b, + bg))
=ds+ (dis+ cp+ c3+ ca)(by + by + by)
= (dis + cip + ci3 + ca)(dys + by + by + by)
= (dis + cp + ey + c)(a, + ay)
=dis+cp+ (et c)a + ay)
(The reader can verify (¢,3 + ¢;4)(a;, + a,) = 0.) Now by definition
dig = (dis + cjy + i3 + c14)(b] + bg)
= (dis +cpt i3+ cl)(by + bg) + 0
= (dis + cip + 13 + cla)(a) + a)(by + bg) + 0
= (dis + cp)(by + bs) + 0
= (dis + dip + dig)(b; + bs) + 0
= d16 + 0/-
Similarly, d|, = d;, + 0.

We know that a, + a,/0.7a} + a,/0". Thus x>x + 0’ is an isomorphism

of these quotients. The above calculations show that this isomorphism sends

{by, b3, bs, bg, di,, dis, dig}. It follows that the sublattices generated by these
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two 4-frames are isomorphic, and hence that {b,, b,, bs, b¢, d,5, d}s, di¢} 1s a
4-frame of characteristic ¢ as well as characteristic p. In this frame a5 (cf.
(1.5)) is given by

a;s(x) = ((x + by)(dy, + bs) + ds; )(by + bs).

Thus afs(b,) = b, and af(b,) = b,. Since p and ¢ are relatively prime, it
follows that a,5(b;) = b,. However, by Lemma 1.4, a,5(b,) = d,s. Thus b, =
d,s, a contradiction. []

The above proof yields the following corollary.

COROLLARY 3.2. Let M be a modular lattice containing 4-frames {a;, c,;} and
{4, c\;} of characteristics p and q, respectively, for distinct primes p and q. Also
suppose that a, + a,/a,a, 7 a} + ay/aja, and a| = a, + aja,, a)= a, +
a\ay, and ¢y, = ¢\, + ajas. Then a,/a,a, is a distributive sublattice of M. []

We shall use this corollary and the lattice L of §2 to show that
epimorphisms in the category of modular lattices need not be onto. Let
A={(x,y) €EL X L: x < y} and let B be the sublattice of L X L genera-
ted by 4 and (a;, 0). Let f be the natural embedding of 4 into B. We shall
show that f is an epimorphism, although it clearly is not onto. Let g be a
homomorphism from B to a modular lattice C. We shall show that g is
determined by its values on A. It then follows easily from the categorical
definition of epimorphism that fis an epimorphism. Since B is generated by A
and (a;, 0), g is determined by its values on 4 and (a,, 0). The lattice L is
embedded into 4, and hence into B by the diagonal embedding, x — (x, x).
Thus B contains elements ((a;, @;), etc.) satisfying the hypotheses of Corollary
3.2. Since these hypotheses are preserved by homomorphisms, this corollary
implies that g(a,, @,)/g(0, 0) in C is distributive. Now (q,, 0) is a relative
complement of (0,a,) in the quotient (a;, a;)/(0,0). Thus g(a,, 0) is
determined by g(0, a,) since relative complements are unique in distributive
lattices. Hence g is determined by its restriction to A. Thus we have proved
the following theorem.

THEOREM 3.3. Epimorphisms in the category of modular lattice and lattice
homomorphisms are not necessarily onto. []

THEOREM 3.4. FM (5) is not residually finite, and there is a lattice identity
with five variables which holds in all finite modular lattices but not in all
modular lattices.

ProoF. First recall that L depends on the choice of the fields F and K and
the isomorphism o from @, + a, + a; + a,/a; + a, to a} + a;/0'". The proof
of Theorem 2.1 depends only on L having the two frames {a;, c¢,;} and
{4, c};}- Thus we need really only consider the sublattice L’ of L generated
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by {a, Cjs al, c;j: i=1,23,4,j=2,3,4}. It is easy to see that L’ has the
same form as L, for certain subfields F’ C F and K’ C K. Thus we may
assume that L is generated by {a;, c,;, 4/, c¢};}. We mention that for any fields
F and K such that |F| = |K| = w and char(F) = p # g = char(K) one can
choose the map o so that the L thus obtained is generated by {a;, ¢y, 4/, c};}.
We shall complete the proof by showing that a,, ¢,;, g/, and c]; are in the
sublattice of L generated by
G = {a; + aj, ¢y, 13 + Chyp @) + Gy, €13 + Cy ).
First
(a3 + ag)cyy = (a3 + ay)(a; + a3)cy = azcp = 0.
Thus 0 € (G). Hence a, + a, + 0’ = a} + a), € (G). Now
(3 + a3+ ay)(ay + @) = (a + a3 + ay)(a, + @) = 4 € (G)

and
(¢33 + ay + a3)(a5 + a;) = a5 €G).
Moreover,
(cls + cag)(chs + ap + a3) = (cj3 + ci)(a) + a5 + aj)
= cj3 + cyulay + a; + a3) = ¢5 € (G ),
and
a4 = (¢l + chg)(c3 + a3 + a;) € (G ).
Now

ai = (a1 + @)(ci3 + a3),  a; = (a5 + a;)(ch + ay),
ciz2 = (¢i3 + cp)(a) + a3) and ¢y = (cfp + cr)(a] + a3)
are all in (G ). Thus {4/, ¢};} C {G). Now
agtat+estey=a+a+a+a,=1€<{G)
soay;+a,=1-0€{(G). Also a, = ai(a, + a,), a, = aj(a, + a,), and ¢y,
= cj(a; + a,) are in (G ). So
(13 + st a))(a; + ay) = (a; + a3 + cy)(as + ay) = a; €E{G ).
Similarly
ay = (c13 + ¢ + ay)(a; + ay), €34 = (C1 + €13 + cy)(a; + ay),
ci3 = (€13 + c)(ay + a4 + ay),
and
€ = (€13 + c)(a3 + a4 + ay)

are in {G). Finally ¢, = (a, + a,)(c;3 + ¢3,) is in {G). Thus a,, a,, a,,
a4 Cpy, €13, and ¢y, are all in (G ), showing that L is five-generated. The
theorem now follows. []



VARIETY OF MODULAR LATTICES 299

It is possible to construct explicitly the identity alluded to in the above
theorem. Let f be a homomorphism from FM (5) onto L. As in the proof of
Theorem 2.1, it is possible to choose a;, ¢y;, a;, ¢}; € FM (5) such that f(a;) =
a, and {a@, ¢y;}, {4, ¢);} are 4-frames of characteristic p and g, and the
sublattice generated by {a;, a;} is D. The proof began by choosing inverse
images of a;, etc., and modifying these, eventually obtaining the a;, etc. Each
of these modifications can be explicitly carried out. In this manner a term for
a; can be constructed. By the last part of the proof of Theorem 2.1, the
equation a, = a, holds in all finite modular lattices but fails in L.

We close this paper with some open problems. The first one was suggested
to the author by Kirby Baker. Is the variety of modular lattices generated by
its finite dimensional members? (Cf. [6].) Does FM (w) have any infinite,
subdirectly irreducible sublattices? e.g. M_? The existence of such a sublattice
would of course imply that 91U is not generated by its finite members and if
such a sublattice had infinite length the answer to the first problem would be
no. Are there any infinite subdirectly irreducible projective modular lattices?
It is possible to show that the rational projective plane is projective in the
variety it generates, although it is not projective in 9. Are the finitely
generated free modular lattices weakly atomic? (Weakly atomic means that
every proper quotient contains a prime quotient. Alan Day has proved the
corresponding result for free lattices.) Is every splitting modular lattice (cf.
[16]) finite? The results of this paper show that the answer to at least one of
the last two questions must be no.
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