Representing Finite Lattices as Congruence Lattices

William DeMeo, Ralph Freese, Peter Jipsen

BLAST, Vanderbilt University, Aug 14–18, 2017
The Problem

Theorem (Grätzer-Schmidt)

Every algebraic (so every finite) lattice is isomorphic to $\text{Con} (A)$ for some (unary) algebra A.
The Problem

Theorem (Grätzer-Schmidt)

Every algebraic (so every finite) lattice is isomorphic to $\text{Con}(A)$ for some (unary) algebra A.

Problem

Is every finite L isomorphic to $\text{Con}(A)$ for some finite A?
The Problem

Theorem (Grätzer-Schmidt)

Every algebraic (so every finite) lattice is isomorphic to $\text{Con}(A)$ for some (unary) algebra A.

Problem

Is every finite L isomorphic to $\text{Con}(A)$ for some finite A?

Since $\text{Con}(A) = \text{Con}(\langle A, \text{Pol}_1(A) \rangle)$, we assume all algebras are unary.
Possible representation properties for a finite lattice \(L \):

(P1) \(L \) is isomorphic to the congruence lattice of some finite algebra \(\langle A, F \rangle \).

(P2) \(L \) is isomorphic to the congruence lattice of some finite algebra \(\langle A, F \rangle \) where the all nonconstant operations are permutations.

(P3) \(L \) is isomorphic to the congruence lattice of some finite algebra \(\langle A, F \rangle \) where the nonconstant operations generate a transitive permutation group.

(P4) \(L \) is isomorphic to an interval in the lattice of subgroups of a finite group.

\(\text{P4} \Leftrightarrow \text{P3} \Rightarrow \text{P2} \Rightarrow \text{P1} \)
Possible representation properties for a finite lattice L:

(P1) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$.

(P2) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$ where the all nonconstant operations are permutations.
Possible representation properties for a finite lattice \(L \):

(P1) \(L \) is isomorphic to the congruence lattice of some finite algebra \(\langle A, F \rangle \).

(P2) \(L \) is isomorphic to the congruence lattice of some finite algebra \(\langle A, F \rangle \) where the all nonconstant operations are permutations.

(P3) \(L \) is isomorphic to the congruence lattice of some finite algebra \(\langle A, F \rangle \) where the nonconstant operations generate a transitive permutation group.
Properties

Possible representation properties for a finite lattice L:

(P1) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$.

(P2) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$ where the all nonconstant operations are permutations.

(P3) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$ where the nonconstant operations generate a transitive permutation group.

(P4) L is isomorphic to an interval in the lattice of subgroups of a finite group.
Properties

Possible representation properties for a finite lattice L:

(P1) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$.

(P2) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$ where the all nonconstant operations are permutations.

(P3) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$ where the nonconstant operations generate a transitive permutation group.

(P4) L is isomorphic to an interval in the lattice of subgroups of a finite group.

$$(P3) \Rightarrow (P2) \Rightarrow (P1)$$
Properties

Possible representation properties for a finite lattice L:

(P1) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$.

(P2) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$ where the all nonconstant operations are permutations.

(P3) L is isomorphic to the congruence lattice of some finite algebra $\langle A, F \rangle$ where the nonconstant operations generate a transitive permutation group.

(P4) L is isomorphic to an interval in the lattice of subgroups of a finite group.

$(P4) \Leftrightarrow (P3) \Rightarrow (P2) \Rightarrow (P1)$
Let H be a subgroup of G. Let

$$A = \{aH : a \in G\}$$ (left cosets)
Let \(H \) be a subgroup of \(G \). Let

\[A = \{ aH : a \in G \} \]
(left cosets)

Make an algebra \(A \) by adding operations

\[g : aH \mapsto gaH \]
(left multiplication)
Let H be a subgroup of G. Let

$$A = \{ aH : a \in G \} \quad \text{(left cosets)}$$

Make an algebra A by adding operations

$$g : aH \mapsto gaH \quad \text{(left multiplication)}$$

Then $\text{Con } A \cong [H, G]$, the interval in the subgroup lattice.
Theorem (1980)

(P1) holds for all lattices iff (P4) holds for all lattice.
Theorem (1980)

(P1) holds for all lattices iff (P4) holds for all lattice.

The size of a representation $L \cong \text{Con}(A)$ is $|A|$. For $H \leq G$ the size in (P4) is $[G : H]$, the number of left H-cosets of G.

Example. The minimum size for L_6 is 6:

$$f(x) = \begin{cases}
2 & \text{if } x = 1 \\
2 & \text{if } x = 2 \\
1 & \text{if } x = 3 \\
5 & \text{if } x = 4 \\
5 & \text{if } x = 5 \\
4 & \text{if } x = 6
\end{cases}$$

$$g(x) = \begin{cases}
3 & \text{if } x = 1 \\
4 & \text{if } x = 2 \\
4 & \text{if } x = 3 \\
0 & \text{if } x = 4 \\
1 & \text{if } x = 5 \\
1 & \text{if } x = 6
\end{cases}$$

$$h(x) = \begin{cases}
4 & \text{if } x = 1 \\
5 & \text{if } x = 2 \\
3 & \text{if } x = 3 \\
4 & \text{if } x = 4 \\
5 & \text{if } x = 5 \\
3 & \text{if } x = 6
\end{cases}$$

Pálfy and Aschbacher have found groups $H \leq G$ representing this lattice. But Pálfy’s example has $G = A_{11}$ and $|H| = 55$, so the size is $9! = 362,880$.

William DeMeo, Ralph Freese, Peter Jipsen
Theorem (1980)

(P1) holds for all lattices iff (P4) holds for all lattice.

The size of a representation \(L \cong \text{Con} (A) \) is \(|A| \). For \(H \leq G \) the size in (P4) is \([G : H] \), the number of left \(H \)-cosets of \(G \).

Example. The minimum size for \(L_6 \) is 6:

\[
L_6
\]
Theorem (1980)

(P1) holds for all lattices iff (P4) holds for all lattice.

The size of a representation $L \cong \text{Con}(A)$ is $|A|$. For $H \leq G$ the size in (P4) is $[G : H]$, the number of left H-cosets of G.

Example. The minimum size for L_6 is 6:

<table>
<thead>
<tr>
<th>B_6</th>
<th>0 1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>2 2 1 5 5 4</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>3 4 4 0 1 1</td>
</tr>
<tr>
<td>$h(x)$</td>
<td>4 5 3 4 5 3</td>
</tr>
</tbody>
</table>
Theorem (1980)

(P1) holds for all lattices iff (P4) holds for all lattice.

The size of a representation \(L \cong \text{Con} (A) \) is \(|A| \). For \(H \leq G \) the size in (P4) is \([G : H]\), the number of left \(H \)-cosets of \(G \).

Example. The minimum size for \(L_6 \) is 6:

\[
\begin{array}{|c|ccccc|}
\hline
\ L_6& 0 & 1 & 2 & 3 & 4 & 5 \\
B_6 & f(x) & 2 & 2 & 1 & 5 & 5 & 4 \\
g(x) & 3 & 4 & 4 & 0 & 1 & 1 \\
h(x) & 4 & 5 & 3 & 4 & 5 & 3 \\
\hline
\end{array}
\]

Pálfy and Aschbacher have found groups \(H \leq G \) representing this lattice. But Pálfy’s example has \(G = A_{11} \) and \(|H| = 55 \), so the size is \(9! = 362880 \).
Moral: Finding a representation with groups, (P4), may be much harder (and much bigger) than finding a (P1) representation.
New representable lattices from old

- all distributive lattices
New representable lattices from old

- all distributive lattices

interval sublattices
direct products (Jiří Tůma, 1986)
ordinal sums (Ralph McKenzie, 1984; John Snow, 2000)
parallel sums (John Snow, 2000)
sublattices of representable lattices obtained as a union of a filter and an ideal (John Snow, 2000)
overalgebras (DeMeo, 2013)
New representable lattices from old

- all distributive lattices
- interval sublattices
New representable lattices from old

- all distributive lattices
- interval sublattices
- direct products (Jiří Tůma, 1986)
New representable lattices from old

- all distributive lattices
- interval sublattices
- direct products (Jiří Tůma, 1986)
- ordinal sums (Ralph McKenzie, 1984; John Snow, 2000)
New representable lattices from old

- all distributive lattices
- interval sublattices
- direct products (Jiří Tůma, 1986)
- ordinal sums (Ralph McKenzie, 1984; John Snow, 2000)
- parallel sums (John Snow, 2000)
New representable lattices from old

- all distributive lattices
- interval sublattices
- direct products (Jiří Tůma, 1986)
- ordinal sums (Ralph McKenzie, 1984; John Snow, 2000)
- parallel sums (John Snow, 2000)
- sublattices of representable lattices obtained as a union of a filter and an ideal (John Snow, 2000)
New representable lattices from old

- all distributive lattices
- interval sublattices
- direct products (Jiří Tůma, 1986)
- ordinal sums (Ralph McKenzie, 1984; John Snow, 2000)
- parallel sums (John Snow, 2000)
- sublattices of representable lattices obtained as a union of a filter and an ideal (John Snow, 2000)
- overalgebras (DeMeo, 2013)
(A) \(L \) is simple.

(B) For each \(x \neq 0 \) in \(L \), there are elements \(y \) and \(z \) such that

\[
x \lor y = x \lor z = 1 \quad \text{and} \quad y \land z = 0.
\]

(C) \(|L| \neq 2 \) and each element of \(L \) that is not an atom or 0

contains at least four atoms.

Theorem

If \(L \) satisfies \((A) \) and \((B) \) then \(L \) satisfies \((P1) \Rightarrow (P2) \).

If \(L \) satisfies \((A) \), \((B) \) and \((C) \) then \(L \) satisfies \((P1) \Rightarrow (P3) \).
Pálfy-Pudlák Conditions

(A) \(L \) is simple.

(B) For each \(x \neq 0 \) in \(L \), there are elements \(y \) and \(z \) such that \(x \lor y = x \lor z = 1 \) and \(y \land z = 0 \).
Pálfy-Pudlák Conditions

(A) L is simple.

(B) For each $x \neq 0$ in L, there are elements y and z such that $x \lor y = x \lor z = 1$ and $y \land z = 0$.

(C) $|L| \neq 2$ and each element of L that is not an atom or 0 contains at least four atoms.
(A) L is simple.

(B) For each $x \neq 0$ in L, there are elements y and z such that $x \lor y = x \lor z = 1$ and $y \land z = 0$.

(C) $|L| \neq 2$ and each element of L that is not an atom or 0 contains at least four atoms.

Theorem

- *If L satisfies (A) and (B) then L satisfies (P1) \Rightarrow (P2).*
Pálfy-Pudlák Conditions

(A) L is simple.

(B) For each \(x \neq 0 \) in \(L \), there are elements \(y \) and \(z \) such that \(x \lor y = x \lor z = 1 \) and \(y \land z = 0 \).

(C) \(|L| \neq 2 \) and each element of \(L \) that is not an atom or 0 contains at least four atoms.

Theorem

- If \(L \) satisfies (A) and (B) then \(L \) satisfies (P1) \(\Rightarrow \) (P2).
- If \(L \) satisfies (A), (B) and (C) then \(L \) satisfies (P1) \(\Rightarrow \) (P3).
McKenzie’s variants

(B′) If $\varphi : L \to L$ is any meet-preserving map such that $\varphi(x) > x$ for $x \neq 1$, then $\varphi(x) = 1$ for all x.

(B′′) The coatoms of L meet to 0.

(B) \Rightarrow (B′′) \Rightarrow (B′).

Theorem

If L satisfies (A) and (B′) (or (B′′)) then a minimal representation of L witnesses that L satisfies (P2). So, if (A) and (B′) hold and $L \sim = \langle A, F \rangle$ is minimal, then F consists of permutations and constants.
McKenzie’s variants

(B′) If \(\varphi : L \rightarrow L \) is any meet-preserving map such that \(\varphi(x) > x \) for \(x \neq 1 \), then \(\varphi(x) = 1 \) for all \(x \).

(B′′) The coatoms of \(L \) meet to 0.
McKenzie’s variants

\((B') \) If \(\varphi : L \to L \) is any meet-preserving map such that \(\varphi(x) > x \) for \(x \neq 1 \), then \(\varphi(x) = 1 \) for all \(x \).

\((B'') \) The coatoms of \(L \) meet to 0.

\[
(B) \implies (B'') \implies (B').
\]
McKenzie’s variants

\((B')\) If \(\varphi : L \to L\) is any meet-preserving map such that \(\varphi(x) > x\) for \(x \neq 1\), then \(\varphi(x) = 1\) for all \(x\).

\((B'')\) The coatoms of \(L\) meet to 0.

\[(B) \implies (B'') \implies (B').\]

Theorem

- If \(L\) satisfies \((A)\) and \((B')\) (or \((B'')\)) then a minimal representation of \(L\) witnesses that \(L\) satisfies \((P2)\). So,
McKenzie’s variants

(B′) If \(\varphi : L \to L \) is any meet-preserving map such that \(\varphi(x) > x \) for \(x \neq 1 \), then \(\varphi(x) = 1 \) for all \(x \).

(B″) The coatoms of \(L \) meet to 0.

\[(B) \implies (B″) \implies (B′).\]

Theorem

If \(L \) satisfies (A) and (B′) (or (B″)) then a minimal representation of \(L \) witnesses that \(L \) satisfies (P2). So, if (A) and (B′) hold and \(L \cong \langle A, F \rangle \) is minimal, then \(F \) consists of permutations and constants.
Representations by intransitive groups

Suppose $A = \langle A, G \rangle$ is a G-set and let $A_i = \langle A_i, G \rangle$, $i < k$, be the minimal subalgebras of A; i.e. each set A_i is an orbit, or one-generated subuniverse, of A. Define congruences on A by the partitions

$$\tau = |A_0|A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)}$$
Representations by intransitive groups

Suppose $A = \langle A, G \rangle$ is a G-set and let $A_i = \langle A_i, G \rangle$, $i < k$, be the minimal subalgebras of A; i.e. each set A_i is an orbit, or one-generated subuniverse, of A.

Define congruences on A by the partitions

\[
\tau = |A_0|A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)}
\]
\[
\tau_i = |A_i| \quad \text{(at most one nontrivial block)}
\]
Suppose $A = \langle A, G \rangle$ is a G-set and let $A_i = \langle A_i, G \rangle$, $i < k$, be the minimal subalgebras of A; i.e. each set A_i is an orbit, or one-generated subuniverse, of A. Define congruences on A by the partitions

$$\tau = |A_0|A_1| \cdots |A_{k-1}|$$

(the blocks are the orbits)

$$\tau_i = |A_i|$$

(at most one nontrivial block)

$$\gamma_i = |A_i|A - A_i|$$

(exactly two blocks unless $A_i = A$)
Suppose $A = \langle A, G \rangle$ is a G-set and let $A_i = \langle A_i, G \rangle$, $i < k$, be the minimal subalgebras of A; i.e. each set A_i is an orbit, or one-generated subuniverse, of A. Define congruences on A by the partitions

$$
\tau = |A_0|A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)}
$$

$$
\tau_i = |A_i| \quad \text{(at most one nontrivial block)}
$$

$$
\gamma_i = |A_i|A - A_i| \quad \text{(exactly two blocks unless } A_i = A)$$

We call τ the \textit{intransitivity congruence};
Suppose $A = \langle A, G \rangle$ is a G-set and let $A_i = \langle A_i, G \rangle$, $i < k$, be the minimal subalgebras of A; i.e. each set A_i is an orbit, or one-generated subuniverse, of A.

Define congruences on A by the partitions

\[
\tau = |A_0|A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)}
\]

\[
\tau_i = |A_i| \quad \text{(at most one nontrivial block)}
\]

\[
\gamma_i = |A_i|A - A_i| \quad \text{(exactly two blocks unless $A_i = A$)}
\]

We call τ the **intransitivity congruence**;

Theorem

Let $\theta \in \text{Con } (A)$, where $A = \langle A, G \rangle$ and G is a group. Then
\[\tau = |A_0|A_1| \cdots |A_{k-1}| \] (the blocks are the orbits)

1. \(G \) acts transitively if and only if \(\tau = 1_A \).
\(\tau = |A_0|A_1| \cdots |A_{k-1}| \) \quad (the blocks are the orbits)

1. \(G \) acts transitively if and only if \(\tau = 1_A \).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k) \).
\[\tau = |A_0| A_1 | \cdots | A_{k-1} | \] (the blocks are the orbits)

1. G acts transitively if and only if \(\tau = 1_A \).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k) \).
3. The interval \([0_A, \tau]\) is isomorphic to \(\prod_{i=0}^{k-1} \text{Con} (A_i) \).
\[\tau = |A_0|A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)} \]

1. \(G\) acts transitively if and only if \(\tau = 1_A\).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k)\).
3. The interval \([0_A, \tau]\) is isomorphic to \(\prod_{i=0}^{k-1} \text{Con}(A_i)\).
4. If, for some \(i\), \(\theta \geq \bigvee_{j \neq i} \tau_j\) then \(\theta \geq \tau\) or \(\theta \leq \gamma_i\).
\(\tau = |A_0|A_1| \cdots |A_{k-1}| \) (the blocks are the orbits)

1. \(G \) acts transitively if and only if \(\tau = 1_A \).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k) \).
3. The interval \([0_A, \tau]\) is isomorphic to \(\prod_{i=0}^{k-1} \text{Con} (A_i) \).
4. If, for some \(i \), \(\theta \geq \bigvee_{j \neq i} \tau_j \) then \(\theta \geq \tau \) or \(\theta \leq \gamma_i \).
5. If \(\theta \land \tau \prec \tau \) then \(\theta \leq \gamma_i \) for some \(i \).
\[\tau = |A_0|A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)} \]

1. G acts transitively if and only if \(\tau = 1_A \).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k) \).
3. The interval \([0_A, \tau]\) is isomorphic to \(\prod_{i=0}^{k-1} \text{Con} (A_i) \).
4. If, for some \(i \), \(\theta \geq \bigvee_{j \neq i} \tau_j \) then \(\theta \geq \tau \) or \(\theta \leq \gamma_i \).
5. If \(\theta \wedge \tau < \tau \) then \(\theta \leq \gamma_i \) for some \(i \).
6. If \(k > 1 \) and \(|A_i| = 1 \) for all \(i \) except 0 then every coatom of \(\text{Con} (A) \) lies above \(\tau \).
\[
\tau = |A_0|A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)}
\]

1. \(G\) acts transitively if and only if \(\tau = 1_A\).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k)\).
3. The interval \([0_A, \tau]\) is isomorphic to \(\prod_{i=0}^{k-1} \text{Con} (A_i)\).
4. If, for some \(i\), \(\theta \geq \bigvee_{j \neq i} \tau_j\) then \(\theta \geq \tau\) or \(\theta \leq \gamma_i\).
5. If \(\theta \land \tau \prec \tau\) then \(\theta \leq \gamma_i\) for some \(i\).
6. If \(k > 1\) and \(|A_i| = 1\) for all \(i\) except 0 then every coatom of \(\text{Con} (A)\) lies above \(\tau\).
7. If \(k > 1\) and \([0_A, \tau]\) is directly indecomposable then every coatom of \(\text{Con} (A)\) lies above \(\tau\).
\[\tau = |A_0| A_1 | \cdots | A_{k-1} | \] (the blocks are the orbits)

1. \(G \) acts transitively if and only if \(\tau = 1_A \).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k) \).
3. The interval \([0_A, \tau]\) is isomorphic to \(\prod_{i=0}^{k-1} \text{Con}(A_i) \).
4. If, for some \(i \), \(\theta \geq \bigvee_{j \neq i} \tau_j \) then \(\theta \geq \tau \) or \(\theta \leq \gamma_i \).
5. If \(\theta \land \tau < \tau \) then \(\theta \leq \gamma_i \) for some \(i \).
6. If \(k > 1 \) and \(|A_i| = 1 \) for all \(i \) except 0 then every coatom of \(\text{Con}(A) \) lies above \(\tau \).
7. If \(k > 1 \) and \([0_A, \tau]\) is directly indecomposable then every coatom of \(\text{Con}(A) \) lies above \(\tau \).
8. If \(k = 2 \) and \(|A_1| = 1 \) then \(\tau \) is a coatom and everything is comparable with it.
\[\tau = |A_0| |A_1| \cdots |A_{k-1}| \quad \text{(the blocks are the orbits)} \]

1. \(G\) acts transitively if and only if \(\tau = 1_A\).
2. The interval \([\tau, 1_A]\) is isomorphic to \(\text{Eq}(k)\).
3. The interval \([0_A, \tau]\) is isomorphic to \(\prod_{i=0}^{k-1} \text{Con}(A_i)\).
4. If, for some \(i\), \(\theta \geq \bigvee_{j \neq i} \tau_j\) then \(\theta \geq \tau\) or \(\theta \leq \gamma_i\).
5. If \(\theta \land \tau < \tau\) then \(\theta \leq \gamma_i\) for some \(i\).
6. If \(k > 1\) and \(|A_i| = 1\) for all \(i\) except 0 then every coatom of \(\text{Con}(A)\) lies above \(\tau\).
7. If \(k > 1\) and \([0_A, \tau]\) is directly indecomposable then every coatom of \(\text{Con}(A)\) lies above \(\tau\).
8. If \(k = 2\) and \(|A_1| = 1\) then \(\tau\) is a coatom and everything is comparable with it.
9. If \(\tau\) is a coatom and \([0_A, \tau]\) is directly indecomposable then everything is comparable with it.
Examples: L_{14}

L_{14} satisfies (A) and (B'') so a minimal representation is permutational.

Example

L_{14} satisfies (A) and (B'') so a minimal representation is permutational.
Examples: \mathbf{L}_{14}

Example

- \mathbf{L}_{14} satisfies (A) and (B'') so a minimal representation is permutational.
Example

- \(L_{14} \) satisfies (A) and (B'') so a minimal representation is permutational.
- \(L_{14} \cong \text{Con} \langle A, G \rangle \) is not possible if \(G \) acts intransitively,
Examples: \(L_{14} \)

\[\begin{array}{c}
\circ \\
\end{array} \]

- \(L_{14} \) satisfies (A) and (B'') so a minimal representation is permutational.
- \(L_{14} \cong \text{Con} \langle A, G \rangle \) is not possible if \(G \) acts intransitively, so
- if \(\text{Con} \langle A, F \rangle \) is a minimal representation, then \(F \) generates a transitive group.
Example

- L_{14} satisfies (A) and (B'') so a minimal representation is permutational.
- $L_{14} \cong \text{Con} \langle A, G \rangle$ is not possible if G acts intransitively, so if $\text{Con} \langle A, F \rangle$ is a minimal representation, then F generates a transitive group.
Examples: \(L_{14} \)

Example

- \(L_{14} \) satisfies (A) and (B’’) so a minimal representation is permutational.
- \(L_{14} \cong \text{Con} \langle A, G \rangle \) is not possible if \(G \) acts intransitively, so if \(\text{Con} \langle A, F \rangle \) is a minimal representation, then \(F \) generates a transitive group.
- Is \(L_{14} \) representable? (Yes: as \([H, A_6]\) with \([A_6 : H] = 90\))
- Is this a minimum representation? (Don’t know)
Examples: L_{15}, (the dual of L_{14})
Examples: L_{15}, (the dual of L_{14})

τ
Examples: L_{15}, (the dual of L_{14})

Example

$L_{15} \cong \text{Con} \langle \{0, 1, 2, 3\}, G \rangle$, G the group generated by the double transposition $0 \leftrightarrow 1, 2 \leftrightarrow 3$.
Examples: L_{15}, (the dual of L_{14})

Example

- $L_{15} \cong \text{Con} \langle \{0, 1, 2, 3\}, G \rangle$, G the group generated by the double transposition $0 \leftrightarrow 1, 2 \leftrightarrow 3$.
- $L_{14} \cong L_{15}^d$, which again proves L_{14} is representable.
Examples: L_4.

![Diagram of L_4 lattice]
Examples: L_4.

Example

L_4 satisfies (B'') but not (A) so minimal representations need not be permutational.
Examples: \(L_4 \).

\[\tau \]

Example

\(L_4 \) satisfies (B'') but not (A) so minimal representations need not be permutational. In fact

\(L_4 \cong \langle \{0, 1, 2, 3\}, f, g \rangle \), where

\[
\begin{array}{c|cccc}
B_4 & 0 & 1 & 2 & 3 \\
\hline
f(x) & 1 & 0 & 3 & 2 \\
g(x) & 0 & 0 & 2 & 2 \\
\end{array}
\]
Example

- L_4 satisfies (B’’) but not (A) so minimal representations need not be permutational.
- But L_4 does have an intransitive representation on 6:

$$
\begin{array}{c|ccccc}
B'_4 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
f(x) & 1 & 2 & 0 & 4 & 5 & 3 \\
g(x) & 0 & 2 & 1 & 3 & 5 & 4 \\
\end{array}
$$
Examples: \(L_{19} \), a harder example:
Examples: L_{19}, a harder example:

Lemma

Let $A = \langle A, G \rangle$ be a finite algebra, where G is an intransitive group of permutations on A. Suppose the intransitivity congruence τ is a coatom. Then there do not exist congruences $0_A < \psi < \theta$ in $\text{Con} (A)$ with $\theta \land \tau = 0_A$.
Proof

Lemma

Let $\mathbf{A} = \langle A, G \rangle$ be a finite algebra, where G is an intransitive group of permutations on A. Suppose the intransitivity congruence τ is a coatom. Then there do not exist congruences $0_A < \psi < \theta$ in $\text{Con}(A)$ with $\theta \land \tau = 0_A$.

Proof.

Since τ is a coatom, there are exactly two orbits; call them B and C. Since $\theta \land \tau = 0_A$, if $(x, y) \in \theta$ then $x = y$ or one is in B and the other is in C. So θ defines a bipartite graph between B and C. Since G acts transitively on both B and C, this graph corresponds to a bijection between B and C. The same applies to ψ. But equivalence relations corresponding to such graphs cannot be comparable.
Theorem

All lattices with at most 7 elements can be represented, with the one possible exception of L_{10}:
All lattices with at most 7 elements can be represented, with the one possible exception of L_{10}:

If $L_{10} \cong \langle A, F \rangle$, then F generates a transitive group on A.
Theorem

All lattices with at most 7 elements can be represented, with the one possible exception of L_{10}:

If $L_{10} \cong \langle A, F \rangle$, then F generates a transitive group on A.

Proof.

L_{10} satisfies (A) and (B’’). By part (5) of the intransititivity theorem, it cannot be represented with an intransitive group.
Closure Method
Finding Reps: Methods and Algorithms

- Closure Method
- Overallgebras
Finding Reps: Methods and Algorithms

- Closure Method
- Overalgebras
- Ideal-Filter
Finding Reps: Methods and Algorithms

- Closure Method
- Overallgebras
- Ideal-Filter
- Duality
Finding Reps: Methods and Algorithms

- Closure Method
- Overalgebras
- Ideal-Filter
- Duality
- Group Methods (GAP)
Closure Method to find a Representation of L

(1) Search through $\text{Eq}(X_k)$, $k = 2, 3, ...$ finding sublattices isomorphic to L.

(2) For each sublattice $L \sim L' \leq \text{Eq}(X_k)$ found, find the unary polymorphs of the members of L'; that is, calculate the set F of all unary operations on X_k which respect all $\theta \in L'$.

(3) For F found in the previous step, test if $\text{Con}(\langle X_k, F \rangle) = L'$. If so then $A = \langle X_k, F \rangle$ is a minimal representation. Otherwise continue the search.
Closure Method to find a Representation of \(L \)

(1) Search through \(\text{Eq}(X_k), \ k = 2, 3, \ldots \) finding sublattices isomorphic to \(L \).
Closure Method to find a Representation of L

(1) Search through $\text{Eq}(X_k)$, $k = 2, 3, \ldots$ finding sublattices isomorphic to L.

(2) For each sublattice $L \cong L' \leq \text{Eq}(X_k)$ found, find the unary polymorphs of the members of L'; that is, calculate the set F of all unary operations on X_k which respect all $\theta \in L'$.

Closure Method to find a Representation of L

(1) Search through $\text{Eq}(X_k)$, $k = 2, 3, \ldots$ finding sublattices isomorphic to L.

(2) For each sublattice $L \cong L' \leq \text{Eq}(X_k)$ found, find the unary polymorphs of the members of L'; that is, calculate the set F of all unary operations on X_k which respect all $\theta \in L'$.

(3) For F found in the previous step, test if $\text{Con}(\langle X_k, F \rangle) = L'$. If so then $A = \langle X_k, F \rangle$ is a minimal representation. Otherwise continue the search.
(a) **Find a small presentation of L:**
The procedure can be sped up by first finding a presentation of L with the minimal number of generators. Besides speeding up the search in Eq(k), it is enough in calculating the unary polymorphs to respect the generators.
(b) **Subdirect Decompositions:**

Subdirect decompositions can be used to speed up finding unary polymorphs. For example, if \(\theta_0, \theta_1 \in L' \leq \text{Eq}(X_k) \) with \(\theta_0 \land \theta_1 = 0 \), then \(X_k \) is naturally embedded into \(X_k/\theta_0 \times X_k/\theta_1 \). Since the operations in a direct product are component-wise, this cuts the search space of possible unary polymorphs from \(k^k \) down to \(r^r s^s \), where \(r \) and \(s \) are the number of blocks in \(\theta_0 \) and \(\theta_1 \).
(c) **Uniform Equivalence Relations:**
If it can be shown that the algebra of a minimal representation of L has a transitive permutation group for its nonconstant unary polynomials, then we can restrict our search in $\text{Eq}(k)$ to uniform equivalence relations. Moreover the search for unary polymorphs can be restricted to permutations.
(d) **Small generating set for the operations:**
Of course if $F' \subseteq F$ is a set of generators for the moniod F, we can take $A = \langle X_k, F' \rangle$.
Nondist., linearly indec., small lattices

<table>
<thead>
<tr>
<th></th>
<th>B₁</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₁</td>
<td>f(x)</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>g(x)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B₂</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₂</td>
<td>f(x)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B₃</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₃</td>
<td>f(x)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>g(x)</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>h(x)</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>k(x)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Method: overalgebras
\[L_4 \quad \begin{array}{c|cccc} B_4 & 0 & 1 & 2 & 3 \\ \hline f(x) & 1 & 0 & 3 & 2 \\ g(x) & 0 & 0 & 2 & 2 \end{array} \]

\[L_5 \quad \begin{array}{c|cccccccccccc} B_5 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline f(x) & 1 & 2 & 3 & 4 & 5 & 0 & 7 & 8 & 9 & 10 & 11 & 6 \\ g(x) & 6 & 1 & 1 & 0 & 9 & 8 & 7 & 0 & 5 & 4 & 3 & 2 & 1 \\ h(x) & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 0 \end{array} \]

\[L_6 \quad \begin{array}{c|ccccc} B_6 & 0 & 1 & 2 & 3 & 4 & 5 \\ \hline f(x) & 2 & 2 & 1 & 5 & 5 & 4 \\ g(x) & 3 & 4 & 4 & 0 & 1 & 1 \\ h(x) & 4 & 5 & 3 & 4 & 5 & 3 \end{array} \]
Method: overalgebras
No finite algebra known with this as its congruence lattice.

A finite algebra with 108 elements known.

<table>
<thead>
<tr>
<th>B_{12}</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>$h(x)$</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>$k(x)$</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>$l(x)$</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>
Method: overalgebras

Upper interval in Sub(A_6),
algebra of size 90

Upper interval in Sub($C_2 \cdot A_6$)
algebra of size 180
Method: filter-ideal in Sub(A_4)

Dual of 19, no explicit small representation known

Method: filter-ideal in SmallGroup(216,153) in GAP
$$\begin{array}{c|cccccccc} \mathbf{B}_{21} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ \hline \\
 f(x) & 3 & 3 & 4 & 8 & 8 & 2 & 2 & 3 & 4 \\ g(x) & 0 & 0 & 6 & 1 & 1 & 0 & 0 & 5 & 6 \\ h(x) & 4 & 5 & 5 & 7 & 8 & 8 & 7 & 4 & 4 \\ \end{array}$$

Dual of 23, no explicit small representation known

$$\begin{array}{c|cccc} \mathbf{B}_{23} & 0 & 1 & 2 & 3 \\ \hline \\
 f(x) & 0 & 1 & 0 & 1 \\ g(x) & 1 & 1 & 3 & 3 \\ h(x) & 3 & 2 & 3 & 2 \\ k(x) & 4 & 1 & 5 & 3 \\ \end{array}$$

$$\begin{array}{c|cccc} \mathbf{B}_{24} & 0 & 1 & 2 & 3 \\ \hline \\
 f(x) & 1 & 1 & 2 & 2 \\ g(x) & 2 & 3 & 3 & 2 \\ \end{array}$$
William DeMeo, Ralph Freese, Peter Jipsen
Representing Finite Lattices
Aug 14–18, 2017 31 / 34

\[
\begin{array}{c|cccc}
B_{25} & 0 & 1 & 2 & 3 & 4 \\
\hline
f(x) & 0 & 0 & 2 & 2 & 2 \\
g(x) & 0 & 1 & 0 & 1 & 1 \\
h(x) & 1 & 1 & 4 & 4 & 4 \\
k(x) & 2 & 3 & 2 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
B_{26} & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
f(x) & 1 & 0 & 3 & 2 & 0 & 2 \\
g(x) & 4 & 4 & 5 & 5 & 1 & 3 \\
h(x) & 0 & 0 & 0 & 0 & 1 & 1 \\
k(x) & 3 & 5 & 3 & 5 & 3 & 3 \\
\end{array}
\]
<table>
<thead>
<tr>
<th>B_{27}</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>0 1 2 3 4 5 0 0 0 0 0 2 2 2 2 2</td>
</tr>
<tr>
<td>g(x)</td>
<td>4 5 3 4 5 3 5 3 4 5 3 4 5 4 5 3</td>
</tr>
<tr>
<td>h(x)</td>
<td>2 2 1 5 5 4 2 1 5 5 4 2 2 5 5 4</td>
</tr>
<tr>
<td>k(x)</td>
<td>3 4 4 0 1 1 4 4 0 1 1 3 4 0 1 1</td>
</tr>
<tr>
<td>l(x)</td>
<td>0 6 7 8 9 10 6 7 8 9 10 0 6 8 9 10</td>
</tr>
<tr>
<td>m(x)</td>
<td>11 12 2 13 14 15 12 2 13 14 15 11 12 13 14 15</td>
</tr>
</tbody>
</table>

Method: overalgebras

<table>
<thead>
<tr>
<th>B_{28}</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>0 1 2 3 4 5 0 0 0 0 0 2 2 2 2 2</td>
</tr>
<tr>
<td>g(x)</td>
<td>3 3 4 3 3 4 3 4 3 3 4 3 3 3 3 4</td>
</tr>
<tr>
<td>h(x)</td>
<td>1 0 0 4 3 3 0 0 4 3 3 1 0 4 3 3</td>
</tr>
<tr>
<td>k(x)</td>
<td>4 5 5 1 2 2 5 5 1 2 2 4 5 1 2 2</td>
</tr>
<tr>
<td>l(x)</td>
<td>0 6 7 8 9 10 6 7 8 9 10 0 6 8 9 10</td>
</tr>
<tr>
<td>m(x)</td>
<td>11 12 2 13 14 15 12 2 13 14 15 11 12 13 14 15</td>
</tr>
</tbody>
</table>

Method: overalgebras

William DeMeo, Ralph Freese, Peter Jipsen
Representing Finite Lattices
Aug 14–18, 2017
32 / 34
\begin{align*}
\text{L}_{29} & \quad B_{29} \quad 0 \ 1 \ 2 \ 3 \ 4 \\
& \quad f(x) \quad 1 \ 0 \ 3 \ 2 \ 2 \\
& \quad g(x) \quad 2 \ 4 \ 2 \ 4 \ 3 \\
\text{L}_{30} & \quad B_{30} \quad 0 \ 1 \ 2 \ 3 \ 4 \\
& \quad f(x) \quad 0 \ 3 \ 4 \ 3 \ 4 \\
& \quad g(x) \quad 2 \ 2 \ 1 \ 4 \ 3 \\
\text{L}_{31} & \quad B_{31} \quad 0 \ 1 \ 2 \ 3 \ 4 \\
& \quad f(x) \quad 0 \ 1 \ 1 \ 0 \ 0 \\
& \quad g(x) \quad 1 \ 1 \ 2 \ 2 \ 2 \\
& \quad h(x) \quad 3 \ 2 \ 2 \ 4 \ 4 \\
\text{L}_{32} & \quad B_{32} \quad 0 \ 1 \ 2 \ 3 \ 4 \\
& \quad f(x) \quad 0 \ 1 \ 1 \ 3 \ 3 \\
& \quad g(x) \quad 1 \ 2 \ 2 \ 4 \ 4 \\
& \quad h(x) \quad 3 \ 3 \ 4 \ 3 \ 4
\end{align*}
William DeMeo, Ralph Freese, Peter Jipsen
Representing Finite Lattices
Aug 14–18, 2017 34 / 34

\[
\begin{array}{c|cccccccccccccccc}
\mathbf{B}_{33} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
f(x) & 1 & 3 & 2 & 0 & 9 & 11 & 10 & 8 & 13 & 15 & 14 & 12 & 5 & 7 & 6 & 4 \\
g(x) & 11 & 8 & 10 & 9 & 7 & 4 & 6 & 5 & 15 & 12 & 14 & 13 & 3 & 0 & 2 & 1 \\
h(x) & 14 & 15 & 12 & 13 & 10 & 11 & 8 & 9 & 6 & 7 & 4 & 5 & 2 & 3 & 0 & 1 \\
\end{array}
\]