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Mal’tsev Conditions
(A. I. Mal’tsev) A variety V is CP iff there is a term p(x , y , z)
in the signature of V satisfying

p(x , y , y) ≈ x , p(x , x , y) ≈ y

(B. Jónsson) A variety is CD iff for some n it has terms
di(x , y , z) satisfying

d0(x , y , z) ≈ x ;

di(x , y , x) ≈ x for all i ;
di(x , x , z) ≈ di+1(x , x , z) if i is even; (∆n)
di(x , z, z) ≈ di+1(x , z, z) if i is odd;
dn(x , y , z) ≈ z.
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Linear Mal’tsev Conditions

A linear term is one in with at most one occurrence of an
operation symbol, eg. x , p(x , y , x).

An equation is linear if both sides are.

A Mal’tsev condition is linear if its equations are.

OK, this terminology sucks!!! Tough !
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Linear Mal’tsev Conditions
The following properties are definable by linear MC’s:

CP
CD

CM
HM term
TT
CSD∧

CSD
k -permutable, for some k
NU term
wNU term
cube term
(weak) difference term
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Linear Good, non-Linear Bad

Question: Given Σ idempotent, is VΣ CM?

Derivative: Dent, Kearnes, Szendrei find Σ′ ⊇ Σ, with

VΣ is CM⇔ Σ′ |= x ≈ y

McNulty: The question is recursively undecidable.

But if Σ is linear then the question is decidable.

In fact:
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Linear Good, non-Linear Bad

Theorem

Each of the following problems is decidable: for a finite set Σ of
idempotent, linear equations, determine if VΣ is

CM
HM
n-permutable, for some n
CSD∧

CSD
CD
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V is CR (congruence regular) if θ ∈ Con(A), A ∈ V has a
one-element block, then θ = 0A. (Uniform congruences⇒ CR.)

Theorem
A variety V is congruence regular if and only if there exist
ternary terms g1, . . . ,gn and 4-ary terms f1, . . . , fn such that the
following equations hold identically in V.

gi(x , x , z) ≈ z for 1 ≤ i ≤ n
x ≈ f1(x , y , z, z)

f1(x , y , z,g1(x , y , z)) ≈ f2(x , y , z, z)

...
fn(x , y , z,gn(x , y , z)) ≈ y

Is CR defined by a linear Mal’tsev condition?
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Proving non-Linearity

Let A and B be sets and let

f : B � A and g : A � B with f (g(a)) = a.

So A is a set retraction of B via f and g.

Let p be an n-ary operation on B. Define an n-ary operation pf ,g

on A by
pf ,g(a1, . . . ,an) = f (p(g(a1), . . . ,g(an))) (∗)

Now suppose B is an algebra. If we use (∗) for each basic
operation of B then the resulting algebra we get on A we call a
basic set-retract of B.

Theorem (W. Taylor)
An equational theory Σ has a linear basis iff its variety V is
closed under basic set-retracts.
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Proving non-Linearity

Let t be a term of arity n in the signature of B,

let t̄ be an operation symbol of arity n,
A is the algebra on A with basic operations:

t̄A(a1, . . . ,an) = (tB)f ,g(a1, . . . ,an) = f (tB(g(a1), . . . ,g(an))).

If σ is the signature of B, σ̄ := {t̄ : t is a σ-term} is the
signature of A.
A is called a full set retract.
The map t 7→ t̄ does not preserve compositions, so
this is very confusing.
Here’s proof:
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Proving non-Linearity
Let t be a term of arity n in the signature of B,
let t̄ be an operation symbol of arity n,
A is the algebra on A with basic operations:

t̄A(a1, . . . ,an) = (tB)f ,g(a1, . . . ,an) = f (tB(g(a1), . . . ,g(an))).

Theorem (Taylor, Kearnes, Sequeira, Szendrei)
If B satisfies a Mal’tsev condition given by linear equations and
A is a full set-retract of B, then A also satisfies this Mal’tsev
condition. (And conversely, when stated more carefully.)

Proof.
By example: if B has a Mal’tsev term p(x , y , z) then p̄A(x , y , z)
is a basic operation of A which, by (∗) is a Mal’tsev term.
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Example: Having a semilattice term

A binary term t(x , y) is called a semilattice term if

t(x , x) ≈ x
t(x , y) ≈ t(y , x)

t(x , t(y , z)) ≈ t(t(x , y), z)

Theorem
Having a semilattice term cannot be defined by a linear Mal’tsev
condition.

Idea: Find B with a semilattice term and a full set retract A that
doesn’t.
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B is the join semilattice on 0 < a, b < 1.

1

0
ba

A = {0,a,b} and f (1) = 0, otherwise f (x) = x .
Terms of B: tn(x1, . . . , xn) = x1 ∨ · · · ∨ xn, n ≥ 2.
If a1, . . . ,an ∈ A, then the basic operations of A are

t̄A
n (a1, . . . ,an) = f (

∨
ai) =

{
0 if

∨
ai = 1∨

ai otherwise

So if both a and b occur in {a1, . . . ,an} then
t̄A
n (a1, . . . ,an) = 0; otherwise it is the join.

Goal: Show A = 〈A, t̄A
2 , t̄

A
3 , . . .〉 does not have a

semilattice term.
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Calculations with UACalc
Start with just t̄A

2 .
t̄A
2 0 a b
0 0 a b
a a a 0
b b 0 b

Let A2 = 〈A, t̄A
2 〉, A3 = 〈A, t̄A

2 , t̄
A
3 〉, . . . .

Then FV (A2)(x , y) has only 5 elements:

x , y , t̄2(x , y), t̄2(x , t̄2(x , y)) and t̄2(y , t̄2(x , y)).

None of these is a semilattice term.

If we add t̄A
3 , FV (A3)(x , y) still only has 5 elements, suggesting

FV (A)(x , y) has only 5 elements. Sidelight:

|FV (A2)(x , y , z)| = 96, but |FV (A3)(x , y , z)| = 97
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Calculations with UACalc
t̄A
n (a1, . . . ,an) is totally symmetric and idempotent and

t̄n+1(x , x , x2, . . . , xn) ≈ t̄n(x , x2, . . . , xn)

so to show FV (A)(x , y) =

{x , y , t̄2(x , y), t̄2(x , t̄2(x , y)), t̄2(y , t̄2(x , y))}

We just need to show it is closed under t̄i , i = 2,3,4,5.

Corollary
Having a semilattice term is not definable by a linear MC.
Having a binary idempotent, commutative term with
t(x , t(x , y)) ≈ t(x , y) is not definable by a linear MC.
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Digression
(Kozik, Krokhin, Valeriote, Willard, Maroti, Janko)
A finitely generated V is CSD∧ iff it has terms r , s and t
with s a weak NU,

r(y , x , x) ≈ t(y , y , x),

r(x , x , y) ≈ r(x , y , x) ≈ t(x , y , x) ≈ t(y , x , x) ≈ s(x , x , y)

V (B) is CSD∧ with r = s = t = x ∨ y ∨ z = t3.

So V (A) is CSD∧ with r = s = t = t̄3.

Question: does V (A2) satisfy CSD∧?

Yes (using UACalc)

r(x , y , z) = t̄2(x , t̄2(y , z))

s(x , y , z) = t̄2(̄t2(x , y), t̄2(z, t̄2(x , y)))

t(x , y , z) = t̄2(z, t̄2(x , y))
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Example: Regularity is not Linear

Congruence regularity cannot be defined by a linear
Mal’tsev condition.
Proof sketch:

Let B = {〈0,0〉, 〈0,1〉, 〈1,0〉, 〈1,1〉} with the 3-place
operation x + y + z modulo 2.

As B is the idempotent reduct of a vector space, the variety
generated by B is congruence regular.

Let A = {0,1,2} and define maps f : B → A and g : A→ B
by f (〈x , y〉) = x + y (so f (〈1,1〉) = 2) and g(0) = 〈0,0〉,
g(1) = 〈1,0〉 and g(2) = 〈1,1〉.

|0,2|1| is a congruence of A.
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Other Examples

Varieties with weakly uniform congruences cannot be
defined by a linear MC.

(W. Taylor) The class of varieties with no two element
algebra form a Mal’tsev class. W. Taylor (1973).

Example: the variety of groups of exponent 3.

This class cannot be defined by a linear MC.
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Origins and Motivation: TCT and Localization

If A is a set retract of B, then g(A) ⊆ B and so we can
identify A with g(A) and view A as subset of B.

Letting e := g ◦ f : B → B we get a retraction map:
e(e(x)) = e(x).

So A = e(B) is a set retract of B.

We make A into an algebra of signature σ̄ by letting

t̄A(a1, . . . ,an) = etB(a1, . . . ,an)
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