Linear Mal'tsev Conditons

Ralph Freese

http://math.hawaii.edu/~ralph/
http://uacalc.org/
https://github.com/UACalc/

General Algebra and its
Applications

Mal'tsev Conditions

- (A. I. Mal'tsev) A variety ν is CP iff there is a term $p(x, y, z)$ in the signature of \mathcal{V} satisfying

$$
p(x, y, y) \approx x, \quad p(x, x, y) \approx y
$$

Mal'tsev Conditions

- (A. I. Mal'tsev) A variety v is CP iff there is a term $p(x, y, z)$ in the signature of \mathcal{V} satisfying

$$
p(x, y, y) \approx x, \quad p(x, x, y) \approx y
$$

- (B. Jónsson) A variety is CD iff for some n it has terms $d_{i}(x, y, z)$ satisfying

$$
\begin{array}{rlr}
d_{0}(x, y, z) \approx x ; & \\
d_{i}(x, y, x) \approx x & \text { for all } i ; \\
d_{i}(x, x, z) \approx d_{i+1}(x, x, z) & \text { if } i \text { is even; } \\
d_{i}(x, z, z) \approx d_{i+1}(x, z, z) & \text { if } i \text { is odd; } \\
d_{n}(x, y, z) \approx z . &
\end{array}
$$

Linear Mal'tsev Conditions

- A linear term is one in with at most one occurrence of an operation symbol, eg. $x, p(x, y, x)$.

Linear Mal'tsev Conditions

- A linear term is one in with at most one occurrence of an operation symbol, eg. $x, p(x, y, x)$.
- An equation is linear if both sides are.

Linear Mal'tsev Conditions

- A linear term is one in with at most one occurrence of an operation symbol, eg. $x, p(x, y, x)$.
- An equation is linear if both sides are.
- A Mal'tsev condition is linear if its equations are.

Linear Mal'tsev Conditions

- A linear term is one in with at most one occurrence of an operation symbol, eg. $x, p(x, y, x)$.
- An equation is linear if both sides are.
- A Mal'tsev condition is linear if its equations are.
- OK, this terminology sucks!!!

Linear Mal'tsev Conditions

- A linear term is one in with at most one occurrence of an operation symbol, eg. $x, p(x, y, x)$.
- An equation is linear if both sides are.
- A Mal'tsev condition is linear if its equations are.
- OK, this terminology sucks!!! Tough!

Linear Mal'tsev Conditions

The following properties are definable by linear MC's:

- CP
- CD

Linear Mal'tsev Conditions

The following properties are definable by linear MC's:

- CP
- CD
- CM
- HM term
- TT
- CSD ${ }_{\wedge}$
- CSD
- k-permutable, for some k
- NU term
- wNU term
- cube term
- (weak) difference term

Linear Good, non-Linear Bad

Linear Good, non-Linear Bad

Question: Given Σ idempotent, is $\mathcal{V}_{\Sigma} \mathrm{CM}$?

Linear Good, non-Linear Bad

Question: Given Σ idempotent, is $\mathcal{V}_{\Sigma} \mathrm{CM}$?

- Derivative: Dent, Kearnes, Szendrei find $\Sigma^{\prime} \supseteq \Sigma$, with

$$
\nu_{\Sigma} \text { is } \mathrm{CM} \Leftrightarrow \Sigma^{\prime} \models x \approx y
$$

Linear Good, non-Linear Bad

Question: Given Σ idempotent, is $\nu_{\Sigma} \mathrm{CM}$?

- Derivative: Dent, Kearnes, Szendrei find $\Sigma^{\prime} \supseteq \Sigma$, with

$$
\nu_{\Sigma} \text { is } \mathrm{CM} \Leftrightarrow \Sigma^{\prime} \models x \approx y
$$

- McNulty: The question is recursively undecidable.

Linear Good, non-Linear Bad

Question: Given Σ idempotent, is $\mathcal{V}_{\Sigma} \mathrm{CM}$?

- Derivative: Dent, Kearnes, Szendrei find $\Sigma^{\prime} \supseteq \Sigma$, with

$$
\nu_{\Sigma} \text { is } \mathrm{CM} \Leftrightarrow \Sigma^{\prime} \models x \approx y
$$

- McNulty: The question is recursively undecidable.
- But if Σ is linear then the question is decidable.

Linear Good, non-Linear Bad

Question: Given Σ idempotent, is $\mathcal{V}_{\Sigma} \mathrm{CM}$?

- Derivative: Dent, Kearnes, Szendrei find $\Sigma^{\prime} \supseteq \Sigma$, with

$$
\mathcal{V}_{\Sigma} \text { is } \mathrm{CM} \Leftrightarrow \Sigma^{\prime} \models x \approx y
$$

- McNulty: The question is recursively undecidable.
- But if Σ is linear then the question is decidable.
- In fact:

Linear Good, non-Linear Bad

Theorem

Each of the following problems is decidable: for a finite set Σ of idempotent, linear equations, determine if V_{Σ} is

- CM
- HM
- n-permutable, for some n
- CSD
- CSD
- CD

\mathcal{V} is $\mathbf{C R}$ (congruence regular) if $\theta \in \mathbf{C o n}(\mathbf{A}), \mathbf{A} \in \mathcal{V}$ has a one-element block, then $\theta=\mathbf{O}_{\mathbf{A}}$. (Uniform congruences $\Rightarrow \mathrm{CR}$.)

\mathcal{V} is $\mathbf{C R}$ (congruence regular) if $\theta \in \mathbf{C o n}(\mathbf{A}), \mathbf{A} \in \mathcal{V}$ has a

 one-element block, then $\theta=\mathbf{0}_{\mathbf{A}}$. (Uniform congruences $\Rightarrow \mathrm{CR}$.)
Theorem

A variety v is congruence regular if and only if there exist ternary terms g_{1}, \ldots, g_{n} and 4-ary terms f_{1}, \ldots, f_{n} such that the following equations hold identically in \mathcal{V}.

$$
\begin{aligned}
g_{i}(x, x, z) & \approx z \quad \text { for } 1 \leq i \leq n \\
x & \approx f_{1}(x, y, z, z) \\
f_{1}\left(x, y, z, g_{1}(x, y, z)\right) & \approx f_{2}(x, y, z, z) \\
& \vdots \\
f_{n}\left(x, y, z, g_{n}(x, y, z)\right) & \approx y
\end{aligned}
$$

\mathcal{V} is $\mathbf{C R}$ (congruence regular) if $\theta \in \mathbf{C o n}(\mathbf{A}), \mathbf{A} \in \mathcal{V}$ has a one-element block, then $\theta=\mathrm{O}_{\mathbf{A}}$. (Uniform congruences $\Rightarrow \mathrm{CR}$.)

Theorem

A variety v is congruence regular if and only if there exist ternary terms g_{1}, \ldots, g_{n} and 4 -ary terms f_{1}, \ldots, f_{n} such that the following equations hold identically in \mathcal{V}.

$$
\begin{aligned}
g_{i}(x, x, z) & \approx z \quad \text { for } 1 \leq i \leq n \\
x & \approx f_{1}(x, y, z, z) \\
f_{1}\left(x, y, z, g_{1}(x, y, z)\right) & \approx f_{2}(x, y, z, z) \\
& \vdots \\
f_{n}\left(x, y, z, g_{n}(x, y, z)\right) & \approx y
\end{aligned}
$$

Is CR defined by a linear Mal'tsev condition?

Proving non-Linearity

Let A and B be sets and let

$$
f: B \rightarrow A \text { and } g: A \hookrightarrow B \text { with } f(g(a))=a .
$$

So A is a set retraction of B via f and g.

Proving non-Linearity

Let A and B be sets and let

$$
f: B \rightarrow A \text { and } g: A \hookrightarrow B \text { with } f(g(a))=a .
$$

So A is a set retraction of B via f and g.
Let p be an n-ary operation on B. Define an n-ary operation $p_{f, g}$ on A by

$$
\begin{equation*}
p_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(p\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) \tag{*}
\end{equation*}
$$

Proving non-Linearity

Let A and B be sets and let

$$
f: B \rightarrow A \text { and } g: A \hookrightarrow B \text { with } f(g(a))=a .
$$

So A is a set retraction of B via f and g.
Let p be an n-ary operation on B. Define an n-ary operation $p_{f, g}$ on A by

$$
p_{t, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(p\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right)
$$

Now suppose \mathbf{B} is an algebra. If we use (*) for each basic operation of \mathbf{B} then the resulting algebra we get on A we call a basic set-retract of B.

Proving non-Linearity

Let A and B be sets and let

$$
f: B \rightarrow A \text { and } g: A \hookrightarrow B \text { with } f(g(a))=a .
$$

So A is a set retraction of B via f and g.
Let p be an n-ary operation on B. Define an n-ary operation $p_{f, g}$ on A by

$$
p_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(p\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right)
$$

Now suppose \mathbf{B} is an algebra. If we use ($*$) for each basic operation of \mathbf{B} then the resulting algebra we get on A we call a basic set-retract of \mathbf{B}.

Theorem (W. Taylor)

An equational theory Σ has a linear basis iff its variety v is closed under basic set-retracts.

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- A is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- A is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

- If σ is the signature of $\mathbf{B}, \bar{\sigma}:=\{\bar{t}: t$ is a σ-term $\}$ is the signature of \mathbf{A}.

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- A is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

- If σ is the signature of $\mathbf{B}, \bar{\sigma}:=\{\bar{t}: t$ is a σ-term $\}$ is the signature of \mathbf{A}.
- \mathbf{A} is called a full set retract.

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- A is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

- If σ is the signature of $\mathbf{B}, \bar{\sigma}:=\{\bar{t}: t$ is a σ-term $\}$ is the signature of \mathbf{A}.
- \mathbf{A} is called a full set retract.
- The map $t \mapsto \bar{t}$ does not preserve compositions, so

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- A is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

- If σ is the signature of $\mathbf{B}, \bar{\sigma}:=\{\bar{t}: t$ is a σ-term $\}$ is the signature of \mathbf{A}.
- \mathbf{A} is called a full set retract.
- The map $t \mapsto \bar{t}$ does not preserve compositions, so
- this is very confusing.

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- A is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

- If σ is the signature of $\mathbf{B}, \bar{\sigma}:=\{\bar{t}: t$ is a σ-term $\}$ is the signature of \mathbf{A}.
- \mathbf{A} is called a full set retract.
- The map $t \mapsto \bar{t}$ does not preserve compositions, so
- this is very confusing.
- Here's proof:

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- \mathbf{A} is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- \mathbf{A} is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

Theorem (Taylor, Kearnes, Sequeira, Szendrei)

If B satisfies a Mal'tsev condition given by linear equations and \mathbf{A} is a full set-retract of \mathbf{B}, then \mathbf{A} also satisfies this Mal'tsev condition. (And conversely, when stated more carefully.)

Proving non-Linearity

- Let t be a term of arity n in the signature of \mathbf{B},
- let \bar{t} be an operation symbol of arity n,
- \mathbf{A} is the algebra on A with basic operations:

$$
\bar{t}^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=\left(t^{\mathbf{B}}\right)_{f, g}\left(a_{1}, \ldots, a_{n}\right)=f\left(t^{\mathbf{B}}\left(g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)\right) .
$$

Theorem (Taylor, Kearnes, Sequeira, Szendrei)

If B satisfies a Mal'tsev condition given by linear equations and \mathbf{A} is a full set-retract of \mathbf{B}, then \mathbf{A} also satisfies this Mal'tsev condition. (And conversely, when stated more carefully.)

Proof.

By example: if \mathbf{B} has a Mal'tsev term $p(x, y, z)$ then $\bar{p}^{\mathbf{A}}(x, y, z)$ is a basic operation of \mathbf{A} which, by $(*)$ is a Mal'tsev term.

Example: Having a semilattice term

A binary term $t(x, y)$ is called a semilattice term if

$$
\begin{aligned}
t(x, x) & \approx x \\
t(x, y) & \approx t(y, x) \\
t(x, t(y, z)) & \approx t(t(x, y), z)
\end{aligned}
$$

Example: Having a semilattice term

A binary term $t(x, y)$ is called a semilattice term if

$$
\begin{aligned}
t(x, x) & \approx x \\
t(x, y) & \approx t(y, x) \\
t(x, t(y, z)) & \approx t(t(x, y), z)
\end{aligned}
$$

Theorem

Having a semilattice term cannot be defined by a linear Mal'tsev condition.

Example: Having a semilattice term

A binary term $t(x, y)$ is called a semilattice term if

$$
\begin{aligned}
t(x, x) & \approx x \\
t(x, y) & \approx t(y, x) \\
t(x, t(y, z)) & \approx t(t(x, y), z)
\end{aligned}
$$

Theorem

Having a semilattice term cannot be defined by a linear Mal'tsev condition.

Idea: Find \mathbf{B} with a semilattice term and a full set retract \mathbf{A} that doesn't.

- \mathbf{B} is the join semilattice on $0<a, b<1$.

- \mathbf{B} is the join semilattice on $0<a, b<1$.

- $A=\{0, a, b\}$ and $f(1)=0$, otherwise $f(x)=x$.
- \mathbf{B} is the join semilattice on $0<a, b<1$.

- $A=\{0, a, b\}$ and $f(1)=0$, otherwise $f(x)=x$.
- Terms of B: $t_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}, n \geq 2$.
- \mathbf{B} is the join semilattice on $0<a, b<1$.

- $A=\{0, a, b\}$ and $f(1)=0$, otherwise $f(x)=x$.
- Terms of B: $t_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}, n \geq 2$.
- If $a_{1}, \ldots, a_{n} \in A$, then the basic operations of \mathbf{A} are

$$
\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=f\left(\bigvee a_{i}\right)= \begin{cases}0 & \text { if } \bigvee a_{i}=1 \\ \bigvee a_{i} & \text { otherwise }\end{cases}
$$

- \mathbf{B} is the join semilattice on $0<a, b<1$.

- $A=\{0, a, b\}$ and $f(1)=0$, otherwise $f(x)=x$.
- Terms of B: $t_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}, n \geq 2$.
- If $a_{1}, \ldots, a_{n} \in A$, then the basic operations of \mathbf{A} are

$$
\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=f\left(\bigvee a_{i}\right)= \begin{cases}0 & \text { if } \bigvee a_{i}=1 \\ \bigvee a_{i} & \text { otherwise }\end{cases}
$$

- So if both a and b occur in $\left\{a_{1}, \ldots, a_{n}\right\}$ then $\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=0$; otherwise it is the join.
- \mathbf{B} is the join semilattice on $0<a, b<1$.

- $A=\{0, a, b\}$ and $f(1)=0$, otherwise $f(x)=x$.
- Terms of B: $t_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \vee \cdots \vee x_{n}, n \geq 2$.
- If $a_{1}, \ldots, a_{n} \in A$, then the basic operations of \mathbf{A} are

$$
\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=f\left(\bigvee a_{i}\right)= \begin{cases}0 & \text { if } \bigvee a_{i}=1 \\ \bigvee a_{i} & \text { otherwise }\end{cases}
$$

- So if both a and b occur in $\left\{a_{1}, \ldots, a_{n}\right\}$ then $\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=0$; otherwise it is the join.

Goal: Show $\mathbf{A}=\left\langle A, \bar{t}_{2}^{\mathbf{A}}, \bar{t}_{3}^{\mathbf{A}}, \ldots\right\rangle$ does not have a semilattice term.

Calculations with UACalc

Start with just \bar{t}_{2}^{A}.

$$
\begin{array}{c|ccc}
\bar{t}_{2}^{\mathrm{A}} & 0 & a & b \\
\hline 0 & 0 & a & b \\
a & a & a & 0 \\
b & b & 0 & b
\end{array}
$$

Calculations with UACalc

Start with just \bar{t}_{2}^{A}.

$$
\begin{array}{c|ccc}
\bar{t}_{2}^{A} & 0 & a & b \\
\hline 0 & 0 & a & b \\
a & a & a & 0 \\
b & b & 0 & b
\end{array}
$$

Let $\mathbf{A}_{2}=\left\langle A, \bar{t}_{2}^{\mathbf{A}}\right\rangle, \mathbf{A}_{3}=\left\langle A, \bar{t}_{2}^{\mathbf{A}}, \bar{t}_{3}^{\mathbf{A}}\right\rangle, \ldots$.

Calculations with UACalc

Start with just \bar{t}_{2}^{A}.

$$
\begin{array}{c|ccc}
\bar{t}_{2}^{\mathrm{A}} & 0 & a & b \\
\hline 0 & 0 & a & b \\
a & a & a & 0 \\
b & b & 0 & b
\end{array}
$$

Let $\mathbf{A}_{2}=\left\langle A, \bar{t}_{2}^{\mathrm{A}}\right\rangle, \mathbf{A}_{3}=\left\langle A, \bar{t}_{2}^{\mathrm{A}}, \bar{t}_{3}^{\mathrm{A}}\right\rangle, \ldots$.
Then $\mathbf{F}_{V\left(\mathbf{A}_{2}\right)}(x, y)$ has only 5 elements:

$$
x, \quad y, \quad \bar{t}_{2}(x, y), \quad \bar{t}_{2}\left(x, \bar{t}_{2}(x, y)\right) \quad \text { and } \quad \bar{t}_{2}\left(y, \bar{t}_{2}(x, y)\right) .
$$

Calculations with UACalc

Start with just \bar{t}_{2}^{A}.

$$
\begin{array}{c|ccc}
\bar{t}_{2}^{\mathrm{A}} & 0 & a & b \\
\hline 0 & 0 & a & b \\
a & a & a & 0 \\
b & b & 0 & b
\end{array}
$$

Let $\mathbf{A}_{2}=\left\langle\boldsymbol{A}, \bar{t}_{2}^{\mathbf{A}}\right\rangle, \mathbf{A}_{3}=\left\langle\boldsymbol{A}, \bar{t}_{2}^{\mathrm{A}}, \bar{t}_{3}^{\mathrm{A}}\right\rangle, \ldots$.
Then $\mathbf{F}_{V\left(\mathbf{A}_{2}\right)}(x, y)$ has only 5 elements:

$$
x, \quad y, \quad \bar{t}_{2}(x, y), \quad \bar{t}_{2}\left(x, \bar{t}_{2}(x, y)\right) \quad \text { and } \quad \bar{t}_{2}\left(y, \bar{t}_{2}(x, y)\right) .
$$

None of these is a semilattice term.

Calculations with UACalc

Start with just \bar{t}_{2}^{A}.

$$
\begin{array}{c|ccc}
\bar{t}_{2}^{A} & 0 & a & b \\
\hline 0 & 0 & a & b \\
a & a & a & 0 \\
b & b & 0 & b
\end{array}
$$

Let $\mathbf{A}_{2}=\left\langle\boldsymbol{A}, \bar{t}_{2}^{\mathbf{A}}\right\rangle, \mathbf{A}_{3}=\left\langle\boldsymbol{A}, \bar{t}_{2}^{\mathrm{A}}, \bar{t}_{3}^{\mathrm{A}}\right\rangle, \ldots$.
Then $\mathbf{F}_{V\left(\mathbf{A}_{2}\right)}(x, y)$ has only 5 elements:

$$
x, \quad y, \quad \bar{t}_{2}(x, y), \quad \bar{t}_{2}\left(x, \bar{t}_{2}(x, y)\right) \quad \text { and } \quad \bar{t}_{2}\left(y, \bar{t}_{2}(x, y)\right) .
$$

None of these is a semilattice term.
If we add $\bar{t}_{3}^{\mathrm{A}}, \mathbf{F}_{V\left(\mathbf{A}_{3}\right)}(x, y)$ still only has 5 elements, suggesting $\mathbf{F}_{V(\mathrm{~A})}(x, y)$ has only 5 elements.

Calculations with UACalc

Start with just \bar{t}_{2}^{A}.

$$
\begin{array}{c|ccc}
\bar{t}_{2}^{A} & 0 & a & b \\
\hline 0 & 0 & a & b \\
a & a & a & 0 \\
b & b & 0 & b
\end{array}
$$

Let $\mathbf{A}_{2}=\left\langle A, \bar{t}_{2}^{\mathbf{A}}\right\rangle, \mathbf{A}_{3}=\left\langle A, \bar{t}_{2}^{\mathbf{A}}, \bar{t}_{3}^{\mathbf{A}}\right\rangle, \ldots$.

Sidelight:
$\left|\mathbf{F}_{V\left(\mathbf{A}_{2}\right)}(x, y, z)\right|=96$, but $\left|\mathbf{F}_{V\left(\mathrm{~A}_{3}\right)}(x, y, z)\right|=97$

Calculations with UACalc

- $\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$ is totally symmetric and idempotent and

Calculations with UACalc

- $\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$ is totally symmetric and idempotent and

$$
\bar{t}_{n+1}\left(x, x, x_{2}, \ldots, x_{n}\right) \approx \bar{t}_{n}\left(x, x_{2}, \ldots, x_{n}\right)
$$

Calculations with UACalc

- $\bar{t}_{n}^{A}\left(a_{1}, \ldots, a_{n}\right)$ is totally symmetric and idempotent and

$$
\bar{t}_{n+1}\left(x, x, x_{2}, \ldots, x_{n}\right) \approx \bar{t}_{n}\left(x, x_{2}, \ldots, x_{n}\right)
$$

- so to show $\mathrm{F}_{V(\mathrm{~A})}(x, y)=$

$$
\left\{x, y, \bar{t}_{2}(x, y), \bar{t}_{2}\left(x, \bar{t}_{2}(x, y)\right), \bar{t}_{2}\left(y, \bar{t}_{2}(x, y)\right)\right\}
$$

Calculations with UACalc

- $\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$ is totally symmetric and idempotent and

$$
\bar{t}_{n+1}\left(x, x, x_{2}, \ldots, x_{n}\right) \approx \bar{t}_{n}\left(x, x_{2}, \ldots, x_{n}\right)
$$

- so to show $\mathbf{F}_{\boldsymbol{V (A)})}(x, y)=$

$$
\left\{x, y, \bar{t}_{2}(x, y), \bar{t}_{2}\left(x, \bar{t}_{2}(x, y)\right), \bar{t}_{2}\left(y, \bar{t}_{2}(x, y)\right)\right\}
$$

We just need to show it is closed under $\bar{t}_{i}, i=2,3,4,5$.

Calculations with UACalc

- $\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$ is totally symmetric and idempotent and

$$
\bar{t}_{n+1}\left(x, x, x_{2}, \ldots, x_{n}\right) \approx \bar{t}_{n}\left(x, x_{2}, \ldots, x_{n}\right)
$$

- so to show $\mathbf{F}_{V(\mathbf{A})}(x, y)=$

$$
\left\{x, y, \bar{t}_{2}(x, y), \bar{t}_{2}\left(x, \bar{t}_{2}(x, y)\right), \bar{t}_{2}\left(y, \bar{t}_{2}(x, y)\right)\right\}
$$

We just need to show it is closed under $\bar{t}_{i}, i=2,3,4,5$.

Corollary

- Having a semilattice term is not definable by a linear MC.

Calculations with UACalc

- $\bar{t}_{n}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$ is totally symmetric and idempotent and

$$
\bar{t}_{n+1}\left(x, x, x_{2}, \ldots, x_{n}\right) \approx \bar{t}_{n}\left(x, x_{2}, \ldots, x_{n}\right)
$$

- so to show $\mathbf{F}_{V(\mathbf{A})}(x, y)=$

$$
\left\{x, y, \bar{t}_{2}(x, y), \bar{t}_{2}\left(x, \bar{t}_{2}(x, y)\right), \bar{t}_{2}\left(y, \bar{t}_{2}(x, y)\right)\right\}
$$

We just need to show it is closed under $\bar{t}_{i}, i=2,3,4,5$.

Corollary

- Having a semilattice term is not definable by a linear MC.
- Having a binary idempotent, commutative term with $t(x, t(x, y)) \approx t(x, y)$ is not definable by a linear MC.

Digression

- (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko) A finitely generated \mathcal{V} is CSD_{\wedge} iff it has terms r, s and t with s a weak NU,

$$
\begin{aligned}
& r(y, x, x) \approx t(y, y, x) \\
& r(x, x, y) \approx r(x, y, x) \approx t(x, y, x) \approx t(y, x, x) \approx s(x, x, y)
\end{aligned}
$$

Digression

- (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko) A finitely generated \mathcal{V} is CSD_{\wedge} iff it has terms r, s and t with s a weak NU,

$$
\begin{aligned}
& r(y, x, x) \approx t(y, y, x), \\
& r(x, x, y) \approx r(x, y, x) \approx t(x, y, x) \approx t(y, x, x) \approx s(x, x, y)
\end{aligned}
$$

- $\boldsymbol{V}(\mathbf{B})$ is $\operatorname{CSD}_{\wedge}$ with $r=s=t=x \vee y \vee z=t_{3}$.

Digression

- (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko) A finitely generated \mathcal{V} is CSD_{\wedge} iff it has terms r, s and t with s a weak NU,

$$
\begin{aligned}
& r(y, x, x) \approx t(y, y, x), \\
& r(x, x, y) \approx r(x, y, x) \approx t(x, y, x) \approx t(y, x, x) \approx s(x, x, y)
\end{aligned}
$$

- $V(B)$ is $\operatorname{CSD}_{\wedge}$ with $r=s=t=x \vee y \vee z=t_{3}$.
- So $\boldsymbol{V}(\mathbf{A})$ is CSD_{\wedge} with $r=s=t=\bar{t}_{3}$.

Digression

- (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko) A finitely generated v is CSD $_{\wedge}$ iff it has terms r, s and t with s a weak NU,

$$
\begin{aligned}
& r(y, x, x) \approx t(y, y, x), \\
& r(x, x, y) \approx r(x, y, x) \approx t(x, y, x) \approx t(y, x, x) \approx s(x, x, y)
\end{aligned}
$$

- $V(B)$ is $\operatorname{CSD}_{\wedge}$ with $r=s=t=x \vee y \vee z=t_{3}$.
- So $\boldsymbol{V}(\mathbf{A})$ is CSD_{\wedge} with $r=s=t=\bar{t}_{3}$.
- Question: does $\boldsymbol{V}\left(\mathbf{A}_{2}\right)$ satisfy CSD_{\wedge} ?

Digression

- (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko) A finitely generated v is CSD $_{\wedge}$ iff it has terms r, s and t with s a weak NU ,

$$
\begin{aligned}
& r(y, x, x) \approx t(y, y, x) \\
& r(x, x, y) \approx r(x, y, x) \approx t(x, y, x) \approx t(y, x, x) \approx s(x, x, y)
\end{aligned}
$$

- $V(B)$ is $\operatorname{CSD}_{\wedge}$ with $r=s=t=x \vee y \vee z=t_{3}$.
- So $\boldsymbol{V}(\mathbf{A})$ is $\operatorname{CSD}_{\wedge}$ with $r=s=t=\bar{t}_{3}$.
- Question: does $\boldsymbol{V}\left(\mathbf{A}_{2}\right)$ satisfy CSD_{\wedge} ?
- Yes (using UACalc)

$$
\begin{aligned}
r(x, y, z) & =\bar{t}_{2}\left(x, \bar{t}_{2}(y, z)\right) \\
s(x, y, z) & =\bar{t}_{2}\left(\bar{t}_{2}(x, y), \bar{t}_{2}\left(z, \bar{t}_{2}(x, y)\right)\right) \\
t(x, y, z) & =\bar{t}_{2}\left(z, \bar{t}_{2}(x, y)\right)
\end{aligned}
$$

Example: Regularity is not Linear

- Congruence regularity cannot be defined by a linear Mal'tsev condition.
- Proof sketch:
- Let $B=\{\langle 0,0\rangle,\langle 0,1\rangle,\langle 1,0\rangle,\langle 1,1\rangle\}$ with the 3-place operation $x+y+z$ modulo 2.
- As \mathbf{B} is the idempotent reduct of a vector space, the variety generated by \mathbf{B} is congruence regular.
- Let $A=\{0,1,2\}$ and define maps $f: B \rightarrow A$ and $g: A \rightarrow B$ by $f(\langle x, y\rangle)=x+y($ so $f(\langle 1,1\rangle)=2)$ and $g(0)=\langle 0,0\rangle$, $g(1)=\langle 1,0\rangle$ and $g(2)=\langle 1,1\rangle$.
- $|0,2| 1 \mid$ is a congruence of \mathbf{A}.

Other Examples

- Varieties with weakly uniform congruences cannot be defined by a linear MC.

Other Examples

- Varieties with weakly uniform congruences cannot be defined by a linear MC.
- (W. Taylor) The class of varieties with no two element algebra form a Mal'tsev class. W. Taylor (1973).

Other Examples

- Varieties with weakly uniform congruences cannot be defined by a linear MC.
- (W. Taylor) The class of varieties with no two element algebra form a Mal'tsev class. W. Taylor (1973).
- Example: the variety of groups of exponent 3.

Other Examples

- Varieties with weakly uniform congruences cannot be defined by a linear MC.
- (W. Taylor) The class of varieties with no two element algebra form a Mal'tsev class. W. Taylor (1973).
- Example: the variety of groups of exponent 3.
- This class cannot be defined by a linear MC.

Origins and Motivation: TCT and Localization

- If A is a set retract of B, then $g(A) \subseteq B$ and so we can identify A with $g(A)$ and view A as subset of B.

Origins and Motivation: TCT and Localization

- If A is a set retract of B, then $g(A) \subseteq B$ and so we can identify A with $g(A)$ and view A as subset of B.
- Letting $e:=g \circ f: B \rightarrow B$ we get a retraction map: $e(e(x))=e(x)$.

Origins and Motivation: TCT and Localization

- If A is a set retract of B, then $g(A) \subseteq B$ and so we can identify A with $g(A)$ and view A as subset of B.
- Letting $e:=g \circ f: B \rightarrow B$ we get a retraction map: $e(e(x))=e(x)$.
- So $A=e(B)$ is a set retract of B.

Origins and Motivation: TCT and Localization

- If A is a set retract of B, then $g(A) \subseteq B$ and so we can identify A with $g(A)$ and view A as subset of B.
- Letting $e:=g \circ f: B \rightarrow B$ we get a retraction map: $e(e(x))=e(x)$.
- So $A=e(B)$ is a set retract of B.
- We make A into an algebra of signature $\bar{\sigma}$ by letting

$$
\bar{t}^{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)=e t^{\mathrm{B}}\left(a_{1}, \ldots, a_{n}\right)
$$

