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Mal’'tsev Conditions

@ (A. . Mal'tsev) A variety V is CP iff there is a term p(x, y, z)
in the signature of V satisfying

p(x,y,y)=x, pXx.x,y)~y
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Mal’'tsev Conditions

@ (A. . Mal'tsev) A variety V is CP iff there is a term p(x, y, z)
in the signature of V satisfying

p(x,y,y)=x, pXx.x,y)~y

@ (B. Jonsson) A variety is CD iff for some n it has terms
di(x, y, z) satisfying

do(X,y,2) = X;

di(x,y,X) = x for all J;

di(x,x,z) = di;1(x,x,z) ifiiseven; (Ap)
di(x,z,z) ~ di1(x,z,z) ifiis odd;

dn(Xx,y,2) =~
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Linear Mal’'tsev Conditions

@ A linear term is one in with at most one occurrence of an
operation symbol, eg. x, p(x, y, x).
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Linear Mal’'tsev Conditions

@ A linear term is one in with at most one occurrence of an
operation symbol, eg. x, p(x, y, x).

@ An equation is linear if both sides are.
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Linear Mal’'tsev Conditions

@ A linear term is one in with at most one occurrence of an
operation symbol, eg. x, p(x, y, x).

@ An equation is linear if both sides are.

@ A Mal'tsev condition is linear if its equations are.
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Linear Mal’'tsev Conditions

@ A linear term is one in with at most one occurrence of an
operation symbol, eg. x, p(x, y, x).

@ An equation is linear if both sides are.
@ A Mal'tsev condition is linear if its equations are.

@ OK, this terminology sucks!!!
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Linear Mal’'tsev Conditions

@ A linear term is one in with at most one occurrence of an
operation symbol, eg. x, p(x, y, x).

@ An equation is linear if both sides are.
@ A Mal'tsev condition is linear if its equations are.

@ OK, this terminology sucks!!! Tough !
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Linear Mal’'tsev Conditions

The following properties are definable by linear MC’s:
e CP
e CD
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Linear Mal’'tsev Conditions

The following properties are definable by linear MC’s:
e CP
e CD
e CM
@ HM term
o TT
e CSD,
e CSD
@ k-permutable, for some k
@ NU term
@ wNU term
@ cube term
@ (weak) difference term
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Linear Good, non-Linear Bad
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Linear Good, non-Linear Bad

Question: Given ¥ idempotent, is Vy CM?
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Linear Good, non-Linear Bad

Question: Given ¥ idempotent, is Vy CM?

@ Derivative: Dent, Kearnes, Szendrei find ¥’ D ¥, with

VsisCMe Y Exry
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Linear Good, non-Linear Bad

Question: Given ¥ idempotent, is Vy CM?

@ Derivative: Dent, Kearnes, Szendrei find ¥’ D ¥, with

VsisCM& Y Ex~y

@ McNulty: The question is recursively undecidable.
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Linear Good, non-Linear Bad

Question: Given ¥ idempotent, is Vy CM?

@ Derivative: Dent, Kearnes, Szendrei find ¥’ D ¥, with

VsisCM& Y Ex~y

@ McNulty: The question is recursively undecidable.

@ But if X is linear then the question is decidable.
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Linear Good, non-Linear Bad

Question: Given ¥ idempotent, is Vy CM?

@ Derivative: Dent, Kearnes, Szendrei find ¥’ D ¥, with

VsisCM& Y Ex~y

@ McNulty: The question is recursively undecidable.
@ But if X is linear then the question is decidable.

@ In fact:
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Linear Good, non-Linear Bad

Each of the following problems is decidable: for a finite set * of
idempotent, linear equations, determine if Vs is

e CM

e HM

@ n-permutable, for some n
e CSD,

e CSD

e CD
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V is CR (congruence regular) if # € Con(A), A € V has a
one-element block, then § = 0a. (Uniform congruences = CR.)
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V is CR (congruence regular) if # € Con(A), A € V has a
one-element block, then 6 = 04. (Uniform congruences = CR.)

Theorem

A variety V is congruence regular if and only if there exist
ternary terms gy, ..., Qs and 4-ary terms fy, . . ., f, such that the
following equations hold identically inV.

gi(x,x,2)~z for1<i<n
x =~ fi(x,y,2,2)
h(x,y,z.91(x.y,2)) = k(X.y,2,2)

fn(X7y7zagn(X7yJZ)) %y
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V is CR (congruence regular) if # € Con(A), A € V has a
one-element block, then 6 = 04. (Uniform congruences = CR.)

Theorem

A variety V is congruence regular if and only if there exist
ternary terms g4, ...,9n and 4-ary terms f;, . .., f, such that the
following equations hold identically inV.

gi(x,x,2)~z for1<i<n
x =~ fi(x,y,2,2)
f1(X,y,Z,g1(x,y,z)) ~ f2(X7y7z7z)

fn(X7y7zagn(X7yJZ)) %y

Is CR defined by a linear Mal'tsev condition?
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Proving non-Linearity

Let A and B be sets and let
f:B— A and g: A— B with f(g(a)) = a.

So Ais a set retraction of Bvia f and g.
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Proving non-Linearity

Let A and B be sets and let
f:B— A and g: A— B with f(g(a)) = a.

So Ais a set retraction of Bvia f and g.

Let p be an n-ary operation on B. Define an n-ary operation ps 4

oNADY L (@ .a) = f(p(g(a.. .. o)) (+)
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Proving non-Linearity
Let A and B be sets and let
f:B— A and g: A— B with f(g(a)) = a.
So Ais a set retraction of Bvia f and g.
Let p be an n-ary operation on B. Define an n-ary operation ps 4

oNADY L (@ .a) = f(p(g(a.. .. o)) (+)

Now suppose B is an algebra. If we use (x) for each basic
operation of B then the resulting algebra we get on A we call a
basic set-retract of B.
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Proving non-Linearity

Let A and B be sets and let
f:B— A and g: A— B with f(g(a)) = a.

So Ais a set retraction of Bvia f and g.

Let p be an n-ary operation on B. Define an n-ary operation ps 4
on A by
pf,g(a17"'7an) - f(p(g(a1)’7g(an))) (*)
Now suppose B is an algebra. If we use (x) for each basic
operation of B then the resulting algebra we get on Awe call a
basic set-retract of B.

Theorem (W. Taylor)

An equational theory * has a linear basis iff its variety V is
closed under basic set-retracts.
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let T be an operation symbol of arity n,
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let T be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t®)rg(a,...,an) = f(tB(g(ar),...,g(an))).
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let T be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t®)rg(a,...,an) = f(tB(g(ar),...,g(an))).

@ If o is the signature of B, 5 := {t : tis a o-term} is the
signature of A.
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let T be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t®)rg(a,...,an) = f(tB(g(ar),...,g(an))).

@ If o is the signature of B, 5 := {t : tis a o-term} is the
signature of A.

@ A is called a full set retract.
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let T be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t®)rg(a,...,an) = f(tB(g(ar),...,g(an))).

@ If o is the signature of B, 5 := {t : tis a o-term} is the
signature of A.

@ Ais called a full set retract.
@ The map t — t does not preserve compositions, so
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let T be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t®)rg(a,...,an) = f(tB(g(ar),...,g(an))).

@ If o is the signature of B, 5 := {t : tis a o-term} is the
signature of A.

@ Ais called a full set retract.
@ The map t — t does not preserve compositions, so
@ this is very confusing.
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let T be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t®)rg(a,...,an) = f(tB(g(ar),...,g(an))).

@ If o is the signature of B, 5 := {t : tis a o-term} is the
signature of A.

@ Ais called a full set retract.

@ The map t — t does not preserve compositions, so
@ this is very confusing.

@ Here’s proof:
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Proving non-Linearity

@ Let f be a term of arity nin the signature of B,
@ let t be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tHAay,...,an) = (%) g(a,...,a,) = f(tB(g(a), ..., 9(an))).
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Proving non-Linearity

@ Let t be a term of arity nin the signature of B,
@ let t be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t%)rg(a,...,an) = f(tB(g(ar),...,9(an))).

Theorem (Taylor, Kearnes, Sequeira, Szendrei)

If B satisfies a Mal’tsev condition given by linear equations and
A is a full set-retract of B, then A also satisfies this Mal’tsev
condition. (And conversely, when stated more carefully.)
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Proving non-Linearity

@ Let f be a term of arity nin the signature of B,
@ let t be an operation symbol of arity n,
@ A is the algebra on A with basic operations:

tAay,...,an) = (t%)rg(a,...,an) = f(tB(g(ar),...,9(an))).

Theorem (Taylor, Kearnes, Sequeira, Szendrei)

If B satisfies a Mal’tsev condition given by linear equations and
A is a full set-retract of B, then A also satisfies this Mal’tsev
condition. (And conversely, when stated more carefully.)

By example: if B has a Mal'tsev term p(x, y, z) then pA(x, y, 2)
is a basic operation of A which, by (x) is a Mal'tsev term. O
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Example: Having a semilattice term

A binary term t(x, y) is called a semilattice term if
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Example: Having a semilattice term

A binary term t(x, y) is called a semilattice term if

t(x,x) ~ x
tx,y) = t(y; x)
tx, t(y, 2)) = t(t(x, y), 2)

Having a semilattice term cannot be defined by a linear Mal’tsev
condition.
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Example: Having a semilattice term

A binary term t(x, y) is called a semilattice term if

t(x,x) ~ x
tx,y) = t(y; x)
tx, t(y, 2)) = t(t(x, y), 2)

Having a semilattice term cannot be defined by a linear Mal’tsev
condition.

Idea: Find B with a semilattice term and a full set retract A that
doesn’t.
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1
a <> b
@ B is the join semilattice on 0 < a, b < 1. 0
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1
a ‘<§> b
@ B is the join semilattice on 0 < a, b < 1. 0

@ A={0,a b} and f(1) = 0, otherwise f(x) = x.
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1
a ‘<§> b
@ B is the join semilattice on 0 < a, b < 1. 0

@ A={0,a,b} and f(1) = 0, otherwise f(x) = x.
@ Terms of B: th(X1,...,Xp) = X1 V -+ -V Xp, N > 2.
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1
a ‘<§> b
@ B is the join semilattice on 0 < a, b < 1. 0

@ A={0,a b} and f(1) = 0, otherwise f(x) = x.
@ Terms of B: th(Xq,...,Xp) = X4 V-V Xp, N > 2.
@ Ifay,...,a, € A, then the basic operations of A are

fr?(ah...,an):f(\/ai):{o if \/a; =1

\/ a; otherwise
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1
a Q> b

@ B is the join semilattice on 0 < a, b < 1. 0

@ A={0,a, b} and f(1) = 0, otherwise f(x) = x.

@ Terms of B: th(Xq,...,Xp) = X4 V-V Xp, N > 2.

@ Ifay,...,a, € A, then the basic operations of A are

f#(ah...,an):f(\/ai):{o if \/a; =1

\/ a; otherwise

@ So if both aand b occurin {ay, ..., an} then
tA(a1,...,an) = 0; otherwise it is the join.
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1
a ‘<§‘> b

@ B is the join semilattice on 0 < a, b < 1. 0

@ A={0,a, b} and f(1) = 0, otherwise f(x) = x.

@ Terms of B: th(Xq,...,Xp) = X4 V-V Xp, N > 2.

@ Ifay,...,a, € A, then the basic operations of A are

0 if \/ai =1
\/ a; otherwise

f,‘?(ah...,an):f(\/a,-):{

@ So if both aand b occurin {ay, ..., an} then
tA(a1,...,an) = 0; otherwise it is the join.

Goal: Show A = (A 8 t8,...) does not have a
semilattice term.
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Calculations with UACalc
Start with just t5.

oo Oy
oM oo
on VL
o oolo
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Calculations with UACalc
Start with just t5.

oo Oy
oM oo
on VL
o oolo

Let Az = (A, T8), Ay = (A T2 T4, ...
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Calculations with UACalc
Start with just t5.

oo Oy
oM oo
on VL
o oolo

Let A, = (A 1), As = (A 1 B, ...
Then Fya,)(x, y) has only 5 elements:

X, Y, ?Q(th)? ?2(X7?2(X7y)) and 7‘2(.)/7?2()(7}/))'
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Calculations with UACalc
Start with just t5.

oo Oy
oM oo
on VL
o oolo

Let A, = (A 1), As = (A 1 B, ...
Then Fya,)(x, y) has only 5 elements:

X, Y, ?Q(th)? ?2(X7?2(X7y)) and 7‘2(.)/7?2()(7.}/))'

None of these is a semilattice term.
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Calculations with UACalc
Start with just t5.

oo Oy
oM oo
on VL
o oolo

Let A, = (A,?§>, A; = (A,?@,?§>,
Then Fya,)(x, y) has only 5 elements:

X, y7 ?Z(th)? ?2(X7?2(X7y)) and 7‘2(.}/7?2()(7.}/))'
None of these is a semilattice term.

If we add 18, Fy(a,)(x, ) still only has 5 elements, suggesting
Fva)(x, y) has only 5 elements.
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Calculations with UACalc
Start with just t5.

oo Oy
oM oo
on VL
o oolo

Let Az = (A, T8), Ay = (A T2 T4, ...

Sidelight:

IFva,) (X, Y, 2)| = 96, but [Fya,)(x,y, 2)| = 97
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Calculations with UACalc

e th(ay,...,a,) is totally symmetric and idempotent and
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Calculations with UACalc
e th(ay,...,a,) is totally symmetric and idempotent and

Tt (X, X, X2, ..., Xn) = Ta(X, X2, . . ., Xn)
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Calculations with UACalc

e th(ay,...,a,) is totally symmetric and idempotent and

Tt (X, X, X2, ..., Xn) = Ta(X, X2, . . ., Xn)

@ 50 to show Fyay(x,y) =

{X7 y7 ?Z(th)a t2(X7?2(X7.y))7 ?2(y7?2(xay))}
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Calculations with UACalc

e th(ay,...,a,) is totally symmetric and idempotent and

Tt (X, X, X2, ..., Xn) = Ta(X, X2, . . ., Xn)

@ 50 to show Fyay(x,y) =

{X7 y7 ?Z(th)a t2(X7?2(X7.y))7 ?2(y7?2(xay))}

We just need to show it is closed under ¢, i = 2,3, 4,5.
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Calculations with UACalc

@ tA(ay,..., a,) is totally symmetric and idempotent and

Tt (X, X, Xo, ..., Xn) = To(X, Xo, . .., Xp)

@ 50 to show Fya(x, y) =

{Xv Y, ?2(X7y)7 7‘2()(7?2()(7.}/))7 ?2(y7?2(xvy))}

We just need to show it is closed under ¢, i = 2,3, 4,5.

@ Having a semilattice term is not definable by a linear MC.
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Calculations with UACalc

@ tA(ay,..., a,) is totally symmetric and idempotent and

Tt (X, X, Xo, ..., Xn) = To(X, Xo, . .., Xp)

@ 50 to show Fya(x, y) =

{X7 Y, ?2(X’y)7 ?Z(XJ?Q(XLV))’ 7'2(.}/7?2()(7}/))}

We just need to show it is closed under ¢, i = 2,3, 4,5.

@ Having a semilattice term is not definable by a linear MC.

@ Having a binary idempotent, commutative term with
t(x, t(x,y)) = t(x,y) is not definable by a linear MC.
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Digression

@ (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko)
A finitely generated V is CSD,, iff it has terms r, sand t
with s a weak NU,
r(y,x, x) = tly,y, x),
r(x, x,y) = r(x,y,x) = t(x,y,x) = t(y, x, x) = s(x, X, y)
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Digression

@ (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko)
A finitely generated V is CSD,, iff it has terms r, sand t

with s a weak NU,

r(y,x,x) = t(y,y, x),
r(x,x,y)=r(x,y,x) = t(x,y,x) = t(y.x,x) = s(x,X,y)

@ V(B)isCSD,withr=s=t=xVyVvz=t.
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Digression

@ (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko)
A finitely generated V is CSD,, iff it has terms r, sand t
with s a weak NU,

r(y,x,x) = t(y,y,x),
r(x,x,y)=r(x,y,x) = t(x,y,x) = t(y.x,x) = s(x,X,y)

@ V(B)isCSD,withr=s=t=xVyVvz=t.
@ So V(A)isCSD, withr=s=1t=t.
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Digression

@ (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko)
A finitely generated V is CSD,, iff it has terms r, sand t
with s a weak NU,

r(y,x,x) = t(y,y, x),

r(x, x,y) = r(x,y,x) = t(x,y, x) = t(y, X, X) = (X, X, y)
@ V(B)isCSD,withr=s=t=xVyVvz=t.
@ So V(A)isCSD, withr=s=1t=t.
@ Question: does V(A,) satisfy CSD,?
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Digression

@ (Kozik, Krokhin, Valeriote, Willard, Maroti, Janko)
A finitely generated V is CSD,, iff it has terms r, sand t
with s a weak NU,

r(y,x,x) = t(y.y, x),
r(x,x,y) =~ r(x,y,x) = t(x,y,x) = t(y, x,x) = s(x, x,y)
@ V(B)isCSD,withr=s=t=xVyVvz=t.
@ So V(A)isCSD, withr=s=1t=t.
@ Question: does V(A,) satisfy CSD,?
@ Yes (using UACalc)
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Example: Regularity is not Linear

@ Congruence regularity cannot be defined by a linear
Mal’tsev condition.
@ Proof sketch:
e Let B={(0,0),(0,1),(1,0),(1,1)} with the 3-place
operation x + y + z modulo 2.

e As B is the idempotent reduct of a vector space, the variety
generated by B is congruence regular.

o Let A={0,1,2} and definemapsf: B— Aandg: A— B
by f({(x,y)) = x +y (so f((1,1)) = 2) and g(0) = (0,0),
g(1)=(1,0)and g(2) = (1,1).

e |0,2|1]| is a congruence of A.
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Other Examples

@ Varieties with weakly uniform congruences cannot be
defined by a linear MC.
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Other Examples

@ Varieties with weakly uniform congruences cannot be
defined by a linear MC.

@ (W. Taylor) The class of varieties with no two element
algebra form a Mal’tsev class. W. Taylor (1973).
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Other Examples

@ Varieties with weakly uniform congruences cannot be
defined by a linear MC.

@ (W. Taylor) The class of varieties with no two element
algebra form a Mal’tsev class. W. Taylor (1973).

@ Example: the variety of groups of exponent 3.
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Other Examples

@ Varieties with weakly uniform congruences cannot be
defined by a linear MC.

@ (W. Taylor) The class of varieties with no two element
algebra form a Mal’tsev class. W. Taylor (1973).

@ Example: the variety of groups of exponent 3.

@ This class cannot be defined by a linear MC.
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Origins and Motivation: TCT and Localization

@ If Ais a set retract of B, then g(A) C B and so we can
identify A with g(A) and view A as subset of B.
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Origins and Motivation: TCT and Localization

@ If Ais a set retract of B, then g(A) C B and so we can
identify A with g(A) and view A as subset of B.

@ Letting e :=go f: B— B we get a retraction map:

e(e(x)) = e(x).
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Origins and Motivation: TCT and Localization

@ If Ais a set retract of B, then g(A) C B and so we can
identify A with g(A) and view A as subset of B.

@ Letting e :=go f: B— B we get a retraction map:

e(e(x)) = e(x).

@ So A = ¢(B) is a set retract of B.
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Origins and Motivation: TCT and Localization

@ If Ais a set retract of B, then g(A) C B and so we can
identify A with g(A) and view A as subset of B.

@ Letting e :=go f: B— B we get a retraction map:

e(e(x)) = e(x).
@ So A = ¢(B) is a set retract of B.

@ We make A into an algebra of signature & by letting

HAa,...,a,) = et®ay,...,a)
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