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Abstract. We describe the shape of the Binomial distribution, especially its
convexity.

1. Introduction

In this note we describe the shape of the Binomial distribution, especially its
convexity. Let X(n, p) denote a binomial random variable with positive integer
parameter n and success parameter p ∈ [0, 1]. For integers k ∈ [0, n],

P (X(n, p) = k) =
(

n

k

)
pk(1− p)n−k.

For all other real numbers r, P (X(n, k) = r) = 0. Hereafter [0 . . . n] denotes the
set of integers in the real interval [0, n], with similar meanings assigned to [a . . . b),
(a . . . b), etc. Throughout, n denotes a positive integer.

2. The Basic Hill Shape

Proposition 1. For p ∈ (0, 1) let m = d(n + 1)p− 1e.
(1) For k ∈ [0 . . . n),

P (X(n, p) = k + 1) > P (X = k) ⇔ (n + 1)p− 1 > k

(2) For k ∈ [0 . . . n),

P (X(n, p) = k + 1) < P (X = k) ⇔ (n + 1)p− 1 < k

(3) For k ∈ [0 . . . n),

P (X(n, p) = k + 1) = P (X(n, p) = k) ⇔ (n + 1)p− 1 = k

(4) For r and s in [0 . . . n],

r < s ≤ m implies P (X = r) < P (X = s)

and

(n + 1)p− 1 < r < s implies P (X = r) > P (X = s).

(5) P (X = k) is maximized at k = m and this maximum is unique except when
(n + 1)p is an integer. When (n + 1)p is an integer, the maximum occurs
at both (n + 1)p− 1 and (n + 1)p (and nowhere else).
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(6) For k ∈ [0 . . . n], P (X = k) is minimized at k = 0 or k = n. For p = 1/2,
both k = 0 and k = n minimize P (X = k); the minimum value is (1/2)n.
For 0 < p < 1/2, P (X = k) is minimized with k = n with minimum value
pn. For 1/2 < p < 1, P (X = k) is minimized with k = 0 with minimum
value (1− p)n.

Remark. The dual maximum case occurs for n distinct values of p, p = s/(n+1)
for integers 1 ≤ s ≤ n.

Proof. Let us abbreviate X(n, p) as simply X. Since p ∈ (0, 1), P (X = k) > 0 for
all k ∈ [0 . . . n]. For 0 ≤ k < n,

P (X = k + 1)
P (X = k)

=
n!(n− k)!k!pk+1(1− p)n−k−1

n!(k + 1)!(n− k − 1)!pk(1− p)n−k

=
(n− k)p

(k + 1)(1− p)
.

The difference (n− k)p− (k + 1)(1− p) = (n + 1)p− 1− k and hence
(1) P (X = k + 1) > P (X = k) if and only if (n + 1)p− 1 > k.
(2) P (X = k + 1) < P (X = k) if and only if (n + 1)p− 1 < k.
(3) P (X = k + 1) = P (X = k) if and only if (n + 1)p− 1 = k.

The rest of the proposition now follows quickly. Note that, with 0 < p < 1, we
have (n+1)p−1 > −1 and (n+1)p−1 < (n+1)−1 = n. Therefore m = d(n+1)p−1e
is in [0 . . . n] and clearly maximizes P (X = k). Since (n + 1)p is in (0, n + 1), when
(n+1)p is an integer it must be in [1, n] and thus both (n+1)p and (n+1)p−1 are
in [0 . . . n]. By the previous paragraph, P (X = k) is maximized at both (n + 1)p
and (n + 1)p− 1.

In the sentence about r < s ≤ m, because r is an integer one must have r <
(n+1)p−1 by the definition of m = d(n+1)p−1e; hence P (X = r) < P (X = r+1).
This strict inequality continues for each t ∈ (r . . . s− 1]: P (X = t) < P (X = t+1).

To prove the last sentence, let P (X = k) be minimized at k = r ∈ [0 . . . n].
Suppose r > (n + 1)p − 1. If r < n we would have P (r) > P (n) by Item 4;
thus we must have r = n. If r ≤ (n + 1)p − 1, then r ≤ m. If r > 0 we
would have P (r) > P (0) by Item 4; thus we must have r = 0. By comparing
P (X = 0) = (1 − p)n with P (X = n) = pn, we can determine the minimum value
and its location. ¤

Next we explore the relation between d(n+1)p−1e and the mean np of X(n, p).

Proposition 2. Let p ∈ (0, 1) and n a positive integer. Abbreviate X(n, p) as
simply X. Note that

−1 < np− 1 < (n + 1)p− 1 < np < (n + 1)p < n + 1

If (n + 1)p is not an integer, then
(1) d(n + 1)(1− p)− 1e = n− d(n + 1)p− 1e.
(2) np < d(n + 1)p− 1e if and only if n(1− p) > d(n + 1)(1− p)− 1e.
(3) np > d(n + 1)p− 1e if and only if n(1− p) < d(n + 1)(1− p)− 1e.
(4) np = d(n + 1)p− 1e if and only if n(1− p) = d(n + 1)(1− p)− 1e.

If (n + 1)p is an integer, then
(1) d(n + 1)(1− p)− 1e = (n− 1)− d(n + 1)p− 1e.
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(2) d(n + 1)p− 1e < np < d(n + 1)pe. Thus, by the previous proposition, np is
strictly between the two integers k at which P (X = k) is maximized.

(3) (n+1)(1− p) is also an integer and the previous two items hold with p and
1− p replacing each other (since 1− (1− p) = p).

Finally, we mention one more special case: if np is an integer, then d(n+1)p−1e =
np.

Proof. With p ∈ (0, 1) we have

(n + 1)p− 1 = np + p− 1 < np + 1− 1 = np < np + p = (n + 1)p < n + 1

Also
(n + 1)p− 1 = np + p− 1 > np− 1 > −1

Next, suppose that (n + 1)p is not an integer. m = d(n + 1)p − 1e. Then
(n + 1)p− 1 is not an integer and therefore m− 1 < (n + 1)p− 1 < m. Note that

m− 1 < (n + 1)p− 1 < m

m
−m + 1 > −(n + 1)p + 1 > −m

m
n−m + 1 > n− (n + 1)p + 1 > n−m

m
n−m > (n + 1)(1− p)− 1 > n−m− 1

Therefore d(n + 1)(1− p)− 1e = n−m.
Continue with (n + 1)p not being an integer. Then

np < d(n + 1)p− 1e
m

−np > −d(n + 1)p− 1e
m

n− np > n− d(n + 1)p− 1e
m

n(1− p) > d(n + 1)(1− p)− 1e
(where we use what was proved in the previous paragraph). This same argument
works equally well with each < and > replaced by its opposite, and with all of them
replaced by =.

Next, suppose that (n+1)p is an integer. Then (n+1)p−1 and (n+1)(1−p)−1
are also integers and m = (n + 1)p− 1. Hence

d(n+1)(1− p)− 1e = (n+1)(1−p)− 1 = n− (n+1)p = n− (m+1) = (n− 1)−m

By the first item,

d(n + 1)p− 1e = (n + 1)p− 1 < np < (n + 1)p = d(n + 1)pe
Finally, assume that np is an integer. By the first item np−1 < (n+1)p−1 < np.

Therefore d(n + 1)p− 1e = np. ¤
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3. Convexity

We explore the convexity of X(n, p) by examining the change in the forward
differences (these are made explicit in the next proposition). Since we are comparing
forward differences, we need n ≥ 2 so that (0 . . . n) is not empty and we therefore
have some changes in forward differences to compare.

Proposition 3. Let n ≥ 2 be an integer and p ∈ (0, 1). For k in [0 . . . n) let ∆k(p)
be the forward difference of binomial probabilities; specifically,

∆k(p) = P (X(n, p) = k + 1)− P (X(n, p) = k)

For each k in (0 . . . n), let

pk,1 =
(n + 1)(k + 1)−

√
(k + 1)(n + 1)(n + 1− k)

(n + 1)(n + 2)
and

pk,2 =
(n + 1)(k + 1)−

√
(k + 1)(n + 1)(n + 1− k)

(n + 1)(n + 2)
For each k in (0 . . . n), pk,1 and pk,2 are in (0, 1). Moreover,

(1) The binomial distribution X(n, p) is concave up at k for p ∈ (0, pk,1) and
p ∈ (pk,2, 1) in the sense ∆k(p) −∆k−1(p) > 0 for such p (forward differ-
ences are increasing).

(2) The binomial distribution X(n, p) is concave down at k for p ∈ (pk,1, pk,2)
in the sense ∆k(p) − ∆k−1(p) < 0 for such p (forward differences are de-
creasing).

(3) ∆k(p)−∆k−1(p) = 0 if and only if p = pk,1 or p = pk,2

Proof. Let k be in (0 . . . n). Then

∆k(p)−∆k−1(p)
=

(
n

k+1

)
pk+1(1− p)n−k−1 − (

n
k

)
pk(1− p)n−k

−(
n
k

)
pk(1− p)n−k +

(
n

k−1

)
pk−1(1− p)n−k+1

= pk−1(1− p)n−k−1·[(
n

k+1

)
p2 +

(
n

k−1

)
(1− p)2 − 2

(
n
k

)
p(1− p)

]

=
n!pk−1(1− p)n−k−1

(k + 1)!(n− k + 1)!
·

[
(n− k + 1)(n− k)p2 + k(k + 1)(1− p)2 − 2(k + 1)(n− k + 1)p(1− p)

]

=
n!pk−1(1− p)n−k−1

(k + 1)!(n− k + 1)!
·

{
(n + 1)(n + 2)p2 − 2(k + 1)(n + 1)p + k(k + 1)

}

Let
Γ(k, p) = (n + 1)(n + 2)p2 − 2(k + 1)(n + 1)p + k(k + 1).

Because 0 < p < 1, ∆k(p)−∆k−1(p) has the same sign as Γ(k, p). We have

∂Γ(k, p)
∂p

= 2(n + 1)(n + 2)p− 2(k + 1)(n + 1) = 2(n + 1) [(n + 2)p− (k + 1)] .

Thus Γ(k, p) is a parabola in p opening upward, with vertex at p = (k + 1)/(n + 2)
and

Γ(k, (k + 1)/(n + 2)) = − (k + 1)2(n + 1)
n + 2

+ k(k + 1) = −(k + 1)
n + 1− k

n + 2
< 0.
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Note that Γ(k, 0) = k(k + 1) > 0 and Γ(k, 1) = (n − k)(n + 1 − k) > 0. Thus, for
each k, there are exactly two values of p, say pk,1 < pk,2 in (0, 1) such that

(1) Γ(k, pk,1) = 0 and Γ(k, pk,2) = 0.
(2) Γ(k, p) > 0 for p ∈ [0, pk,1) and for p ∈ (pk,2, 1].
(3) Γ(k, p) < 0 for p ∈ (pk,1, pk,2).

By the quadratic formula, the values of pk,1 and pk,2 are

pk,1 =
(n + 1)(k + 1)−

√
(k + 1)(n + 1)(n + 1− k)

(n + 1)(n + 2)

and

pk,2 =
(n + 1)(k + 1)−

√
(k + 1)(n + 1)(n + 1− k)

(n + 1)(n + 2)
¤

Proposition 4. Let n ≥ 2 be an integer and p ∈ (0, 1). For k in [0 . . . n) let ∆k(p)
be the forward difference of binomial probabilities; specifically,

∆k(p) = P (X(n, p) = k + 1)− P (X(n, p) = k)

For each p ∈ (0, 1), let

kp,1 =
−1 + 2p(n + 1)−

√
1 + 4p(1− p)(n + 1)
2

and

kp,2 =
−1 + 2p(n + 1) +

√
1 + 4p(1− p)(n + 1)
2

Then
(1) We have ∆k(p)−∆k−1(p) > 0 for all k in (0 . . . n) when

p <
2(n + 1)−

√
2n(n + 1)

(n + 1)(n + 2)

This last condition is equivalent to 1 > kp,2.
(2) We have ∆1(p)−∆0(p) = 0 and ∆k(p)−∆k−1(p) > 0 for all k in (1 . . . n)

when

p =
2(n + 1)−

√
2n(n + 1)

(n + 1)(n + 2)
This last condition is equivalent to 1 = kp,2.

(3) We have ∆k(p)−∆k−1(p) > 0 for all k in (0 . . . n) when

p >
n(n + 1) +

√
2n(n + 1)

(n + 1)(n + 2)

This last condition is equivalent to kp,1 > n− 1.
(4) We have ∆n−1(p) − ∆n−2(p) = 0 and ∆k(p) − ∆k−1(p) > 0 for all k in

(1 . . . n− 1) when

p =
n(n + 1) +

√
2n(n + 1)

(n + 1)(n + 2)

This last condition is equivalent to kp,1 = n− 1.
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(5) When

2(n + 1)−
√

2n(n + 1)
(n + 1)(n + 2)

< p <
n(n + 1) +

√
2n(n + 1)

(n + 1)(n + 2)

then ∆k(p) − ∆k−1(p) > 0 for k in (0 . . . kp,1) ∪ (kp,2 . . . n); ∆k(p) −
∆k−1(p) < 0 for k in (kp,1 . . . kp,2); and ∆k(p)−∆k−1(p) = 0 when k = kp,1

or k = kp,2.

Proof. We continue with Γ(k, p) as in the previous proof. We showed there that,
for p ∈ (0, 1) and k ∈ (0 . . . n) ∆k(p)−∆k−1(p) is a positive multiple of

Γ(k, p) = (n + 1)(n + 2)p2 − 2(k + 1)(n + 1)p + k(k + 1)

By fixing p and using the quadratic formula to solve for k, we find that Γ(k, p) = 0
if and only if k = pk,1 or k = kp,2 where

kp,1 =
−1 + 2p(n + 1)−

√
1 + 4p(1− p)(n + 1)
2

and

kp,2 =
−1 + 2p(n + 1) +

√
1 + 4p(1− p)(n + 1)
2

Note that, with p ∈ (0, 1) and n a positive integer, 1+4p(1−p)(n+1) > 0 and thus
both kp,1 and kp,2 are real with kp,1 < kp,2. Since the coefficient of k2 in Γ(k, p) is
1 (and hence positive), Γ(k, p) is a parabola in k, opening upward, for a fixed value
of p. Therefore Γ(s, p) < 0 for any real number s in (kp,1, kp,2) while Γ(s, p) > 0 for
any real number s in (−∞, kp,1) or in (kp,2,∞). Thus,

(1) If 1 > kp,2, we’ll have Γ(k, p) > 0 for all k ∈ (0 . . . n).
(2) If 1 = kp,2, we’ll have Γ(1, p) = 0 while Γ(k, p) > 0 for k ∈ (1 . . . n).
(3) If n− 1 < kp,1, we’ll have Γ(k, p) > 0 for all k ∈ (0 . . . n).
(4) If n−1 = kp,1, we’ll have Γ(n−1, p) = 0 while Γ(k, p) > 0 for k ∈ (1 . . . n−1).
(5) The remaining possibility is n − 1 > kp,1 while 1 < kp,2. The sign of

Γ(k, p) may vary with k in this case, as described in the fifth item of this
proposition.
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To prepare to use the quadratic formula to find p such that kp,2 = 1, we first
simplify the equation:

1 ≥ kp,2

m

1 ≥ −1 + 2p(n + 1) +
√

1 + 4p(1− p)(n + 1)
2

m
2 ≥ −1 + 2p(n + 1) +

√
1 + 4p(1− p)(n + 1)

m
3− 2p(n + 1) ≥

√
1 + 4p(1− p)(n + 1)

m
(3− 2p(n + 1))2 ≥ 1 + 4p(1− p)(n + 1) and 3− 2p(n + 1) ≥ 0

m

(n + 2)(n + 1)p2 − 4p(n + 1) + 2 ≥ 0 and
3

2(n + 1)
≥ p

By the quadratic formula, (n + 2)(n + 1)p2 − 4p(n + 1) + 2 = 0 if and only if

p = s =
2(n + 1)−

√
2n(n + 1)

(n + 1)(n + 2)
or p = t =

2(n + 1) +
√

2n(n + 1)
(n + 1)(n + 2)

Because the quadratic (n + 2)(n + 1)p2− 4p(n + 1) + 2 has a positive coefficient for
p2, we have (n+2)(n+1)p2− 4p(n+1)+2 < 0 for p between the two roots above.
Therefore,

(n + 2)(n + 1)p2 − 4p(n + 1) + 2 ≥ 0 ⇔ (p ≤ s or p ≥ t) .

Note that the midpoint between this two solutions s and t is 2/(n + 2). Note
that 2/(n+2) > 3/(2(n+1)) for n > 2 with equality when n = 2. Because the two
solutions s and t are distinct, the larger solution is bigger than the midpoint and
hence, even when n = 2, larger than 3/(2(n + 1)). Therefore,

p ≥ t ⇒ p >
3

2(n + 1)
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Next, we turn to p ≤ s. We have

s ≤ 3
2(n + 1)

m
2(n + 1)−

√
2n(n + 1)

(n + 1)(n + 2)
≤ 3

2(n + 1)
m

2
[
2(n + 1)−

√
2n(n + 1)

]
≤ 3(n + 2)

m
4n + 4− 3n− 6 ≤ 2

√
2n(n + 1)

m
n− 2 ≤ 2

√
2n(n + 1)

m
(n− 2)2 ≤ 4 [2n(n + 1)] and n− 2 ≥ 0

m
n2 − 4n + 4 ≤ 8n2 + 8n and n ≥ 2

m
0 ≤ 7n2 + 12n− 4 and n ≥ 2

m
0 ≤ (7n− 2)(n + 2) and n ≥ 2

The quadratic (7n− 2)(n + 2) has a positive coefficient of n2 and roots at 2/7 and
−2. Hence n ≥ 2 implies (7n−2)(n+2) > 0 and therefore s ≤ 3/(2(n+1)). Hence

p ≤ s ⇒ p ≤ 3
2(n + 1)

It now follows from this paragraph and the previous two paragraphs, that

1 ≥ kp,2 ⇔ p ≤ s

with equality for p = s.
We turn next to finding p such that n− 1 ≤ kp,1. We begin by noting that

(1) n− 1 < kp,1 if and only if 1 > k1−p,2.
(2) n− 1 = kp,1 if and only if 1 = k1−p,2.
(3) n− 1 > kp,1 if and only if 1 < k1−p,2.
(4) Analogous statements hold hold for ≤ and ≥.



CONVEXITY OF THE BINOMIAL DISTRIBUTION 9

Here is a proof of the first of these:

n− 1 < kp,1

m

n− 1 <
−1 + 2p(n + 1)−

√
1 + 4p(1− p)(n + 1)
2

m

−1 <
−2n− 1 + 2p(n + 1)−

√
1 + 4p(1− p)(n + 1)

2
m

1 >
−1 + 2(n + 1)− 2p(n + 1) +

√
1 + 4p(1− p)(n + 1)

2
m

1 >
−1 + 2(n + 1)(1− p) +

√
1 + 4p(1− p)(n + 1)

2
m

1 > k1−p,2

The analogous inequalities that are listed above can be proved similarly.
To prove the third item of this proposition, by the previous paragraph we know

that n − 1 < kp,1 is equivalent to 1 > k1−p,2. By the first item, 1 > k1−p,2 if and
only if

1− p <
2(n + 1)−

√
2n(n + 1)

(n + 1)(n + 2)
This is equivalent to

1− 2(n + 1)−
√

2n(n + 1)
(n + 1)(n + 2)

< p

Note that

1− 2(n + 1)−
√

2n(n + 1)
(n + 1)(n + 2)

=
(n + 1)(n + 2)− 2(n + 1) +

√
2n(n + 1)

(n + 1)(n + 2)

=
n(n + 1) +

√
2n(n + 1)

(n + 1)(n + 2)

Thus

n− 1 < kp,1 ⇔ n(n + 1) +
√

2n(n + 1)
(n + 1)(n + 2)

< p

That proves the equivalence statement that is in Item 3. With (0 . . . n) ⊂ (0, kp,1),
we also have ∆k(p)−∆k−1(p) > 0 for all k ∈ (0 . . . n).

The proof of the fourth item is similar to that of the third item. In the previous
paragraph replace every < by = to obtain the equivalence statement that is in
Item 4. With n − 1 = kp,1 we clearly have ∆n−1(p) − ∆n−2(p) = 0. Also, for
k ∈ (0 . . . n− 1) ⊂ (0, kp,1), ∆k(p)−∆k−1(p) > 0. ¤

For a fixed value of p in (0, 1), the random variables
X(n, p)− np√

np(1− p)
converge to

the standard normal distribution as n →∞. For the standard normal distribution,



10 L. THOMAS RAMSEY 1521 ALEXANDER ST APT 503 HONOLULU, HI 96822

the density function is

f(x) =
1√
2π

e−x2/2 with f ′′(x) =
1√
2π

e−x2/2(x2 − 1)

So f has inflection points at ±1. After suitable normalization, these are the limits
of kp,1 and kp,2 respectively.

Proposition 5. Let p ∈ (0, 1) and n a positive integer. Define kp,1 and kp,2 as in
the previous proposition. Then, with p fixed,

lim
n→∞

k1,p − np√
np(1− p)

= −1

and
lim

n→∞
k2,p − np√
np(1− p)

= −1

Proof. We have

−1 + 2p(n + 1)±
√

1 + 4p(1− p)(n + 1)
2

− np

=
−1 + 2p±

√
1 + 4p(1− p)(n + 1)

2
Clearly,

lim
n→∞

−1 + 2p

2
√

p(1− p)n
= 0

Also,
√

1 + 4p(1− p)(n + 1)
2
√

p(1− p)n
=

√
1 + 4p(1− p)(n + 1)

4p(1− p)n

=

√
1

4p(1− p)n
+

n + 1
n

→ √
0 + 1 = 1 as n →∞

It now follows that

lim
n→∞

k1,p − np√
np(1− p)

= lim
−1 + 2p−

√
1 + 4p(1− p)(n + 1)

2
= −1

while

lim
n→∞

k2,p − np√
np(1− p)

= lim
−1 + 2p +

√
1 + 4p(1− p)(n + 1)

2
= +1

¤
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