For a list of basic facts and concepts from the theory of scheduling, please see the key concepts list at the bottom of page 306 of Tannenbaum.

BASIC CONCEPTS and notation from set theory:
1. sets and their members (or elements): p. 443, Stein
2. one-to-one correspondences between sets: p. 444, Stein
3. two sets are conumerous: p. 444, Stein
4. (proper) subsets of a set: p. 444, Stein
5. denumerable set: p. 450, Stein
6. \(\mathbb{R}, \mathbb{Q}, \mathbb{Z}, \mathbb{N} \) denote, respectively, the sets of all real numbers, rational numbers, integers, and positive integers.

BASIC FACTS from set theory:
1. Stein Chapter 18: theorems 1, 2 4 and 5, and corollaries 1 and 2
2. Any two of the following sets are conumerous: the interval (0,1) (i.e., the set of numbers strictly greater than 0 and strictly less than 1), the set of real numbers, the set of irrational numbers, the set of points in a line segment, the set of points in a line, the set of points in a square, the set of points in a cube, the set of points in three-dimensional space
3. The following sets are denumerable (so any two are conumerous with each other): \(\mathbb{N}, \mathbb{Q} \), the set of positive rationals, the set of negative rationals, the set of negative integers, the set of odd positive integers, the set of odd integers, the set of even integers, the set of positive even integers. This is a lot of examples but all follow immediately from the fact that \(\mathbb{Q} \) is denumerable and:
4. Fact: any infinite subset of a denumerable set is denumerable.
5. Fact: a set is denumerable if it can be divided into two parts, the first denumerable and the second either denumerable or finite. (Note that you cannot assume that both are finite!)
6. A set is denumerable if its elements can be put into an infinite list, each appearing exactly once.
7. The founder of set theory was the German mathematician, Georg Cantor.