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COUNTING GENERALIZED ORDERS
ON NOT NECESSARILY FORMALLY REAL FIELDS

RON BROWN

ABSTRACT. The set of classical orderings of a field com-
patible with a given place from the field to the real numbers
is known to be bijective with the set of homomorphisms from
the value group of the place into the two element group. This
fact is generalized here to the set of “generalized orders” com-
patible with an “extended absolute value,” i.e., an absolute
value allowed to take the value ∞. The set of extensions to a
field F of a given generalized order on a subfield of F is com-
puted and this computation is applied to count the number of
such extensions that arise from finite degree field extensions
of formally p-adic fields.

1. Introduction. The theory of formally p-adic fields had its
origin in Ax and Kochen’s “best possible” solution of a conjecture of
Artin [1, 13]; its further development very much used the theory of
formally real fields as a model and inspiration [9, 12]. That there are
analogies between the two theories should not be surprising; after all,
a field is formally real or formally p-adic if and only if it admits a place
into the field of real numbers R or the field of p-adic numbers Qp, and
R and the fields Qp are simply the completions of the rational field Q
at its nontrivial absolute values. These parallels suggest the possibility
of a common theory which applies to fields admitting a place into a
specific field of characteristic zero which, like R or Qp, comes equipped
with a specific absolute value. Here is an example of a result in this
direction. One of the major theorems of the Artin-Schreier theory of
formally real fields is the fact that the set of orderings of a formally
real field is naturally bijective with the set of real closures of the field;
an equivalent version of this result says that the set of orderings P of a
field compatible with a place τ into R, i.e., with τ (P ) ≥ 0, is naturally
bijective with the set of real closures of the field admitting a place into
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R extending τ . In [3] notions of “generalized orders” compatible with
a place into a field equipped with an absolute value and “closures” with
respect to such places are introduced, and the above theorem of Artin-
Schreier is generalized to this context. Another example. The theory
of formally real fields grew out of Artin’s solution of Hilbert’s 17th
problem. Lang’s classic proof of Artin’s theorem [10] depends on an
existence theorem for rational places on algebraic function fields over
real closed fields. In [6] there is an extension of this theorem to fields
closed with respect to any place into a field equipped with an absolute
value. When specialized to places into Qp, this extension yields results
of Prestel and Roquette [12, Section 7.1] on p-adically closed fields.

In this paper we consider a generalization in the above spirit of a
much more modest result. It is a very useful fact that the set X of
orderings P on a field F which are compatible with a place τ from F
to R is bijective with the set of homomorphisms from the value group
Γ of τ to the two element group Z• = {±1}. In general there is no such
bijection which is canonical. However, it was shown in the first volume
of this journal [2] that there is a canonical map

(1) X ×X −→ Hom (Γ,Z•)

which is bijective in each variable. In Section 2 we will extend this result
to the generalized orders compatible with a place into a field equipped
with an absolute value. We also show there how the discussion can be
formulated in terms of “extended absolute values,” i.e., absolute values
that map into the extended real numbers R ∪ {∞}. This concept
efficiently captures the idea of a place into a field equipped with a
specific absolute value. In Section 3 we give a relative version of the
generalization of the pairing (1) which applies to “admissible” field
extensions. (“Admissible” field extensions are defined in Section 3; for
the moment we mention only that formally real and formally p-adic
fields are essentially admissible extensions of any of their subfields.) A
criterion also appears there for when a given generalized order on a field
can be lifted to a generalized order of an admissible field extension. As
an application we count the set of extensions of a generalized order on
a formally p-adic field F of arbitrary p-rank to a generalized order on
a finite degree admissible extension of F .

Our notation is standard. We denote the group of multiplicative units
of a (unitary) ring R by R•. Thus Z• = {±1}. We also let f |S denote
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the restriction of a map f to a subset S of its domain. The letters
m and n always denote nonnegative integers and p always denotes a
rational prime number. The greatest common divisor of m and n is
denoted here by (m,n).

2. The pairing for generalized orders. For the remainder of
this paper τ will denote a place on a field F whose residue class field F
has characteristic zero and ϕ will denote an absolute value on F such
that τ and ϕ are not both trivial. We also let v, vF and U = τ−1(F

•
)

denote the valuation, value group and group of units corresponding to
the place τ , respectively. For the theories of formally real and formally
p-adic fields, the important examples are when the completion of F at
ϕ is isomorphic to either the field of real numbers or to an algebraic
extension of finite degree d of a field of p-adic numbers. In the latter
case, F is called formally p-adic of p-rank d [12, page 92].

2.1 Definition. A (τ, ϕ)-order on F is a sequence G = (G(n))n>0 of
subgroups of F • such that for all positive integers m and n

(A) if m divides n, then G(m) ⊇ G(n);

(B) G(n) ⊇ τ−1(1);

(C) v (G(n)) = vF ; and

(D) τ (U ∩G(n)) is the topological closure of F
•n

in F
•

with respect
to the topology induced by ϕ.

Remark 2.7 below gives a compact criterion for the sequence G =
(G(n))n>0 to be a (τ, ϕ)-order. The above definition is a bit com-
plicated, but these (τ, ϕ)-orders are naturally bijective, by the map
K � (Kn∩F •)n>0, with the maximal algebraic extensions K of F ad-
mitting a place K → K ∪ [∞} extending τ such that F is dense in K
with respect to an extension of ϕ [3, Theorem 1.5, page 753]. The real
closures of F are such maximal extensions with respect to places into
R and the p-adic closures are such maximal extensions with respect to
places into Qp.

Let X(τ,ϕ) denote the set of all (τ, ϕ)-orders. Let M denote the
multiplicative group of the completion of F with respect to ϕ and
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let M̂ = lim←−n>0
M/Mn denote the Z-adic completion of M [8, page

165]. (If m divides n, then Mm ⊇ Mn, so we have natural maps
θ = θm,n : M/Mn → M/Mm. M̂ is the inverse limit of the resulting
inverse system of groups.) Let βn : U →M/Mn and πn : M̂ →M/Mn

be the canonical maps (so βn(a) = τ (a)Mn). If m divides n, then
βm = θβn and πm = θπn.

2.2 Theorem. There is a unique map

(2) Φ : X(τ,ϕ) ×X(τ,ϕ) −→ Hom(vF, M̂)

such that for all H,G ∈ X(τ,ϕ), n > 0, h ∈ H(n) and g ∈ G(n) with
v(h) = v(g), we have

(3) πnΦ(G,H)(v(g)) = βn(g/h).

Moreover, Φ is bijective in each variable, i.e., for any J ∈ X(τ,ϕ) both
Φ(J,−) and Φ(−, J) are bijections from X(τ,ϕ) to Hom(vF, M̂).

The above theorem implies, for example, that if vF is divisible,
then there is a unique (τ, ϕ)-order since M̂ has no nontrivial divisible
subgroups. The proof of Theorem 2.2 below will give a formula for the
inverse of Φ(J,−).

2.3 Note. Φ is antisymmetric in the sense that, with the above
notation, if γ ∈ vF then Φ(H,G)(γ) = Φ(G,H)(γ)−1 = Φ(G,H)(−γ).

2.4 Example. We indicate here why the above theorem is a
generalization of the Proposition of [2] saying that the map (1) above is
bijective in each coordinate. Suppose that τ is a place from F to R and
that ϕ is the usual absolute value on R. For each classical ordering P of
F associated with τ , i.e., with τ (P ) ≥ 0, the sequence (G(n))n>0 with
G(n) = F • if n is odd and G(n) = P ∩ F • if n is even is a (τ, ϕ)-order
and all (τ, ϕ)-orders are of this type. In the notation of Theorem 2.2 we
have M ∼= R• and M̂ ∼= Z• (the natural map R• → R̂• must kill the
divisible subgroup R•2 of R•), so the objects X, Γ and Z• of formula
(1) may be identified with the X(τ,ϕ), vF and M̂ of Theorem 2.2.
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For the remainder of this paper we will set ϕ = ϕ◦τ (the composition
is understood to map to ∞ all elements of F which τ maps to ∞).
The hypothesis that τ and ϕ are not both trivial is equivalent to the
assertion that ϕ(F ) �= {0, 1}. The composition ϕ is an extended absolute
value on F , i.e., a function into R∪ {∞} with ϕ(0) = 0, ϕ(1) = 1, and
for all a, b ∈ F , ϕ(a+ b) ≤ ϕ(a)+ϕ(b) and ϕ(ab) = ϕ(a)ϕ(b) whenever
the product ϕ(a)ϕ(b) is defined. (The expressions 0·∞ and∞·0 are not
defined.) All extended absolute values arise as above as compositions of
places and absolute values: if ψ is any extended absolute value on F , it
can be regarded as the composition of the place τψ associated with the
valuation ring ψ−1(R) with the absolute value ψ that ψ induces on the
residue class field of that place. Since ϕ determines both τ = τϕ and
ϕ, we will henceforth write Xϕ in place of the more cumbersome X(τ,ϕ)

and, as in [3, Definition 1.2, page 752], simply refer to (τ, ϕ)-orders
as ϕ-orders. When necessary, we also indicate the dependence of the
map Φ and the set of units U on ϕ by writing Φ = Φϕ and U = Uϕ,
respectively.

Extended absolute values appear to have been first introduced by
André Weil [14, pages 420 421]. Their main interest for the author is
the role they can play, along with their associated orders and closures,
as invariants in the arithmetic study of general fields [4, 5]. (In the
setting of general fields neither valuations nor absolute values can by
themselves lead to a useful notion of an Archimedean prime spot.) The
study of extended absolute values includes as special cases the study of
absolute values, i.e., extended absolute values not taking the value ∞,
and valuations (the valuation rings of F correspond bijectively to the
extended absolute values on F with image contained in {0, 1,∞}). A lot
of valuation theory extends routinely and usefully to extended absolute
values; concepts which extend include, for example, equivalence, com-
parability, topological completion, and ultracompletion (equivalently,
maximal immediate extension); all these concepts depend only on the
open unit disk {a ∈ F : ϕ(a) < 1} [5]. We will use in this paper the the-
ory in [3] of Henselizations at extended absolute values. The ϕ-orders
on F contain the cohomological information which determines whether
two Henselian algebraic admissible extensions of F with respect to ϕ
with the same residue class field and value group are actually isomor-
phic; a necessary and sufficient condition for isomorphism is that some
ϕ-order of F extend to orders of both of the Henselian extensions [3,
Theorem 6.2, page 770].
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The next two lemmas will be used in the proof of Theorem 2.2.

2.5 Lemma. Let n > 0. The closures of F •n in F • and in M are
Mn ∩ F • and Mn, respectively.

The above “closures” are taken with respect to the absolute value ϕ
and its extension to M . (The absolute value ϕ extends canonically to
the completion of F with respect to ϕ; we also denote this extension
by ϕ.)

Proof. Let Y denote the closure of F •n in M . We prove here that
Y = Mn in the case that ϕ is non Archimedean and leave the rest of
the argument to the reader.

Let a ∈ Y . Then there exists c ∈ F •n with ϕ ((cn/a)− 1) < ϕ(n2).
Thus by Hensel’s lemma [7, page 83] cn/a ∈ Mn, so a ∈ Mn. Hence
Y ⊆ Mn. The reverse inclusion follows easily from the continuity of
the map x �→ xn from M to M .

2.6 Lemma. For any subgroup J of F • and any n > 0, J ∩ U =
τ−1(Mn) if and only if J ⊇ τ−1(1) and τ (J ∩U) is the closure of F •n

in F • with respect to ϕ.

Proof. (⇒). Since τ−1(1) ⊆ τ−1(Mn) = J ∩ U ⊆ J , the conclusion
follows immediately from Lemma 2.5.

(⇐) By hypothesis and Lemma 2.5, τ (J ∩ U) = Mn ∩ F •, so
τ−1(Mn) ⊇ J ∩ U . But if a ∈ τ−1(Mn), then there exists b ∈ J ∩ U
with τ (a) = τ (b), so

a = (a/b) b ∈ τ−1(1)(J ∩ U) ⊆ J ∩ U.

This shows that J ∩ U = τ−1(Mn).

2.7 Remark. Using the previous lemma one can show that a sequence
H = (H(n))n>0 of subgroups of F • is a ϕ-order if and only if for
all positive m and n, (i) v(H(n) ∩H(m)) = vF ; and (ii) H(n) ∩ U =
τ−1(Mn). After all, the previous lemma says (ii) is necessary; (i) is also
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necessary since if H is a ϕ-order, then v(H(n)∩H(m)) ⊇ v(H(nm)) =
vF . Now suppose that (i) and (ii) both hold. Then (B), (C) and (D)
of Definition 2.1 are clear. Let m divide n and a ∈ H(n). There exists
b ∈ H(n) ∩H(m) with v(b) = v(a), so a = b(a/b) lies in the set

H(m)(U ∩H(n)) = H(m)τ−1(Mn) ⊆ H(m)τ−1(Mm)
= H(m)(U ∩H(m)) = H(m),

and hence condition (A) of Definition 2.1 is also satisfied.

We now turn directly to the

Proof of Theorem 2.2. Suppose G,H ∈ Xϕ and γ ∈ vF . By condition
(C) of Definition 2.1 we can pick for each n > 0 elements gn ∈ G(n)
and hn ∈ H(n) with v(gn) = γ = v(hn). Now suppose g ∈ G(n)
and h ∈ H(n) satisfy v(g) = γ = v(h). By Lemma 2.5 and (D) of
Definition 2.1, τ (g/gn) ∈Mn and τ (hn/h) ∈Mn. Hence

τ (g/h) = τ (g/gn)τ (gn/hn)τ (hn/h) ∈ τ (gn/hn)Mn.

Thus the quantity βn(g/h) in formula (3) is independent of the choice
of g and h. In particular if m divides n, then θ(βn(gn/hn)) =
βm(gn/hn) = βm(gm/hm) since by condition (A) of Definition 2.1 we
have gn ∈ G(n) ⊆ G(m) and, similarly, hn ∈ H(m). Hence there is a
unique element α ∈ M̂ with πn(α) = βn(gn/hn) for all n > 0. Thus
formula (3) unambiguously defines a map Φ(G,H) from vF to M̂ . That
this map is indeed a homomorphism follows routinely from the fact that
v : F • → vF and the maps βn and πn are themselves homomorphisms.
It remains to show that Φ is bijective in each variable and hence, by
Note 2.3, that

Φ(G,−) : Xϕ −→ Hom (vF, M̂)

is bijective. First suppose that H,H ′ ∈ Xϕ and Φ(G,H) = Φ(G,H ′).
Fix n > 0. In order to prove injectivity it suffices by symmetry to show
that H ′(n) ⊆ H(n). Pick a ∈ H ′(n) and write γ = v(a). Then with
the notation above we have

τ (gn/a)Mn = βn(gn/a) = πnΦ(G,H ′)(γ) = πnΦ(G,H)(γ)
= τ (gn/hn)Mn
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so by condition (D) of Definition 2.1 and Lemma 2.5

τ (a/hn) ∈Mn ∩ F • = τ (H(n) ∩ U).

Hence τ (a/khn) = 1 for some k ∈ H(n) ∩ U , so by condition (B) of
Definition 2.1, a/(khn) ∈ H(n). Thus a ∈ H(n), as required. Therefore
Φ(G,−) is injective.

It remains to prove that Φ(G,−) is surjective. Let f ∈ Hom (vF, M̂).
For each n > 0 set

H(n) = {au : a ∈ G(n), u ∈ U and βn(u)πnf(v(a)) = 1}.

Using the equations θβn = βm and θπn = πm, one easily checks
that H = (H(n))n>0 is a sequence of subgroups of F • satisfying
the condition (A) of Definition 2.1. Now consider any γ ∈ vF .
Then γ = v(a) for some a ∈ G(n). There exists w ∈ M with
πnf(v(a)) = wMn. Since F • is dense in M , there exists by Hensel’s
lemma [7, page 83] u ∈ U with τ (u) so close to w−1 that τ (u)w is close
enough to 1 to be in Mn. Hence

βn(u)πnf(v(a)) = τ (u)wMn = 1

so ua ∈ H(n) and v(ua) = γ. Thus the sequence H satisfies condition
(C) of Definition 2.1. We next show that H satisfies conditions (B) and
(D) of Definition 2.1. By Lemma 2.6 it suffices to show thatH(n)∩U =
τ−1(Mn) for all n > 0. First suppose that c ∈ τ−1(Mn). Applying
Lemma 2.6 to G yields that c ∈ G(n) ∩ U and so c = c · 1 ∈ H(n) ∩ U
since

βn(c)πn(f(v(1))) = τ (c)Mn = 1.

Now suppose c ∈ H(n) ∩ U , so we can write c = au where a ∈ G(n),
u ∈ U and βn(u)πnf(v(a)) = 1. Then a ∈ G(n) ∩ U , so τ (a) ∈ Mn.
But also v(a) = 0, so βn(u) = 1. That is, τ (u) ∈ Mn, so indeed
τ (c) = τ (a)τ (u) ∈ Mn ∩ F •. Thus H(n) ∩ U = π−1(Mn). This
completes the proof that H = (H(n))n>0 is a ϕ-order. Let γ ∈ vF .
Since H is a ϕ-order, there exist u ∈ U and a ∈ G(n) with v(ua) = γ
and βn(u)πn(f(v(a))) = 1 (so au ∈ H(n)). Then by the definition of
Φ,

πnΦ(G,H)(γ) = βn(a/(au)) = πnf(γ).
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Since this is true for all γ and all n, we have Φ(G,H) = f . This shows
that Φ(G,−) is surjective and completes the proof of Theorem 2.2.

3. Extensions of ϕ-orders. As in the previous section ϕ is an
extended absolute value on a field F such that F has characteristic
zero. We will assume that G = (G(n))n>0 is a ϕ-order and that (K,ψ)
is an admissible extension of (F, ϕ); that is, ψ is an extended absolute
value on the field extension K of F which restricts to ϕ on F and F
is dense in K with respect to the topology of ψ (we make the natural
identification of F with a subfield of K). If H = (H(n))n>0 is a ψ-
order, we say it is an extension of G when G(n) ⊆ H(n) for all n > 0,
cf. [3, Section 4]. In this section we compute the set of all extensions
of G to a ψ-order of K. We begin with a criterion for this set to be
nonempty.

3.1 Theorem. There is an extension of G to a ψ-order if and only
if for all n > 0,

τψ(Uψ ∩ (K•nG(n))) ⊆Mn.

The above theorem implies that a classical ordering P of F lifts to
an ordering of K if and only if there is a place σ : K → R ∪ {∞}
with σ(PK•2) ≥ 0. For any ψ-order H = (H(n))n>0 we set H ∩ F =
(H(n)∩ F )n>0; then H ∩ F ∈ Xϕ [3, Proposition 4.3, page 765]. (One
can easily show that H extends G if and only if H ∩ F = G.) We will
denote by vE the value group of the restriction of the valuation ring
ψ−1(R) to any subfield E of K. This is consistent with our use of the
notation vF since ψ extends ϕ.

Proof. Suppose that H is a ψ-order extending G. Then for all n > 0,
H(n) ⊇ K•nG(n) [3, Lemma 3.1C, page 762], so

τψ(Uψ ∩ (K•nG(n))) ⊆ τψ(Uψ ∩H(n)) ⊆Mn.

Now suppose conversely that τψ(Uψ ∩ (K•nG(n))) ⊆ Mn for all
n > 0. Let (K ′, ψ′) be a Henselization of (K,ψ), cf. [3, Definition



10 RON BROWN

2.10, page 759]; we will use the results of [3, Section 2] in this proof
repeatedly, sometimes without explicit citation. Let n > 0. Suppose
a ∈ K ′ and b ∈ G(n) and anb ∈ Uψ′ . There exists c ∈ K with
a/c ∈ Uψ′ [3, Theorem 2.13, page 760]. Now K ′/K and K/F are
admissible extensions, so (K ′, ψ′) has the same completion as (F , ϕ).
By our hypothesis then

τψ′(anb) = τψ′(cnb)(τψ′(a/c))n ∈Mn.

Thus τψ′(Uψ′∩(K ′•nG(n))) ⊆Mn. Since K ′ is an admissible extension
of K, any ψ′-order restricts to a ψ-order [3, Proposition 4.3, page 765].
Hence without loss of generality we may assume (K,ψ) is Henselian.
Then (K,ψ) contains a Henselization (F ′, ϕ′) of (F, ϕ) and G extends
to the ϕ′-order G′ = (F ′•nG(n))n>0 [3, Proposition 4.4, page 765]. But
then

τψ(Uψ ∩ (K•nF ′•nG(n))) = τψ(Uψ ∩ (K•nG(n))) ⊆Mn.

Hence without loss of generality we may assume that (F, ϕ) is Henselian.

Suppose that n > 0, b ∈ K• and bn ∈ F . Let (FG, ϕG) denote the
ϕ-closure of F with FmG ∩ F • = G(m) for all m > 0 [3, Theorem 1.5,
page 753]. There exists a ∈ G(n) with bn/a ∈ Uψ, so by hypothesis
τψ(bn/a) ∈ Mn. Since (F, ϕ) is Henselian, F is algebraically closed in
its completion [3, Theorem 2.13, page 760]. Thus there exists c ∈ Uψ∩F
with τψ(cn) = τψ(bn/a). But F with v is Henselian, so there exists
d ∈ F ∩ Uψ with dn = bn/(acn), whence bn = a(cd)n ∈ G(n). This
proves that

En ∩ F • = Kn ∩ F • ⊆ G(n) = FnG ∩ F •

where E denotes the relative algebraic closure of F in K. Now E
and FG are Henselian [3, Proposition 2.8, page 758 and Theorem 5.2,
page 768] and hence there exists an F -homomorphism from (E,ψ|E)
to (FG, ϕG) [3, Theorem 2.14, page 760]. Treating this homomorphism
as an identification we find that GE := (FnG ∩ E•)n>0 is a ψ|E-order
extending G since for all n > 0

(FnG ∩E•) ∩ F = FnG ∩ F • = G(n).

Now choose a ψ-order H = (H(n))n>0 and let f = Φψ|E(GE, H ∩ E).
Since M̂ is complete in the Z-adic topology, therefore it is pure injective



COUNTING GENERALIZED ORDERS 11

[8, Theorems 38.1, 39.1, and 39.5, pages 160 164]. Also because E is
algebraically closed in K, then vK/vE is torsion-free [3, Proposition
2.8, page 758]. Thus vE is a pure subgroup of vK, so f extends to a
homomorphism f∗ : vK → M̂ . By Theorem 2.2 there exists a ψ-order
J with Φψ(J,H) = f∗. But then

Φψ|E(GE, H ∩E) = f = f∗|vE = Φψ(J,H)|vE = Φψ|E(J ∩E,H ∩E),

so GE = J∩E by the injectivity of Φψ|E(−, H∩E). Thus J is a ψ-order
extending GE and hence extending G. That is, G has an extension to
a ψ-order.

We now show that the set of extensions ofG to a ψ-order, if nonempty,
is bijective with the set Hom (vK/vF, M̂).

3.2 Theorem. Let Xψ(G) denote the set of ψ-orders extending G.
If Xψ(G) is nonempty, then Φψ induces a map

ΦG : Xψ(G)×Xψ(G) −→ Hom(vK/vF, M̂)

which is bijective in each coordinate.

The hypothesized map ΦG above is that map making the diagram

Xψ(G)×Xψ(G) �

ΦG

�

α

Hom(vK/vF, M̂)

�

β

Xψ ×Xψ �

Φψ Hom (vK, M̂)

commute, where α is the inclusion map and β is the injection induced
by the canonical surjection vK → vK/vF .

Proof. Suppose that H = (H(s))s>0 and I = (I(s))s>0 are in Xψ(G),
that γ ∈ vF , and that n > 0. Then there exists d ∈ G(n) ⊆ H(n)∩I(n)
with v(d) = γ. Therefore

πnΦψ(H, I)(γ) = βn(d/d) = 1
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so Φψ(H, I)(vF ) = 1. Thus Φψ induces a map Xψ(G) × Xψ(G) →
Hom (vK/vF, M̂) and we have a commutative diagram

Xψ(G) �

ΦG(H,−)

�

i

Hom(vK/vF, M̂)

�

β

Xψ �

Φψ(H,−)
Hom(vK, M̂)

where i is the inclusion map (so α = i× i). Set δ = Φψ(H,−).

We claim that β and δi have the same image. We have already
shown that δi(I) kills vF and hence is in the image of β. On the other
hand, suppose f ∈ Hom(vK/vF, M̂). By Theorem 2.2 there exists
J = (J(s))s>0 in Xψ with δ(J) = β(f). Then J ∩F = (J(s)∩F )s>0 ∈
Xϕ. Hence there exist a ∈ J(n) ∩ F and b ∈ H(n) ∩ F = G(n) with
v(a) = γ = v(b). Thus

1 = πn(β(f)(γ)) = πn(δ(J)(γ)) = βn(b/a) = πnΦϕ(G, J ∩ F )(γ),

so Φϕ(G, J ∩ F ) = 1. But then G = J ∩ F by Theorem 2.2, so
J ∈ Xψ(G). Hence β(f) = δi(J) is in the image of δi, proving our
claim.

The bijectivity of ΦG(H,−) follows immediately from the claim made
in the above paragraph and the fact that both δi and β are injective.
That ΦG(−, H) is also bijective follows from the antisymmetry of Φψ,
cf. Note 2.3.

We end this section with an application of Theorem 3.2 to finite
degree extensions of formally p-adic fields of arbitrary p-rank. We
continue to assume that K/F is an admissible extension and that
G ∈ Xϕ.

3.3 Corollary. Suppose that the completion of F at ϕ is an extension
of Qp of degree d, i.e., that F is formally p-adic of p-rank d, and
that the group vK/vF is finite, say with elementary divisors n1 · · ·ns.
If G extends to a ψ-order, then the number of such extensions is∏s
i=1

(
ni, b

)
, where b is the order of the torsion subgroup of M .
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The group vK/vF is finite of course if the field extension K/F has
finite degree. If d = 1, i.e., F is formally p-adic, then the b above is
(2, p)(p−1); in general, b has the form pa(pf −1) where pf is the order
of the residue class field of ϕ and a is maximal such that M has a path
root of unity.

Proof. From the known structure ofM [11, Proposition 5.7, page 140]
we deduce from [8, Theorem 39.8, page 165] that M̂ ∼= Ẑ×Z/bZ×(Ip)d

(where Ip denotes the additive group of p-adic integers). Since Ẑ is
isomorphic to the direct product of the groups Iq as q ranges over all
rational primes, the torsion subgroup of M̂ is cyclic of order b. By
hypothesis vK/vF ∼= ⊕s

i=1 Z/niZ, so by Theorem 3.2 the number of
extensions of G to a ψ-order is the order of the group

Hom
(
vK/vF, M̂) ∼=

s⊕
i=1

Hom
(
Z/niZ,Z/bZ

)
;

hence the number of extensions is indeed
∏s
i=1(ni, b).
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