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Abstract. We study generalized Schönemann polynomials over a valued field F . If such

a polynomial f is tame (i.e., a root of f generates a tamely ramified extension of F ), we
give a best-possible criterion for when the existence in a Henselian extension field K of an

approximate root of f guarantees the existence of an exact root of f in the extension field K.

Let (F, v) be a valued field with residue class field F , value group vF , and valuation

ring A. For any a ∈ A and polynomial h ∈ A[x] we let a and h denote the canonical image

of a and h in F and F [x], respectively. Using notation as in [5, pp. 82–83], we call a

polynomial k ∈ A[x] a generalized Schönemann polynomial over (F, v) if it can be written

in the form

k = pe + th

where e ≥ 1; p ∈ A[x] is monic with p irreducible over F ; h ∈ A[x] has degree less than

edeg p; p does not divide h; and, finally, t ∈ A is nonzero and v(t) 6∈ svF for any divisor

s > 1 of e.

If vF is discrete rank one, then the above condition on t is satisfied when v(t) is positive

and generates vF ; thus the Schönemann polynomials of [5, pp. 82–83] are indeed general-

ized Schönemann polynomials in the above sense. We allow the case p = x, in which case

we obtain generalized Eisenstein polynomials. We use the above notation in the statement

of our first theorem.
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Theorem 1. Suppose k = pe+th is a generalized Schönemann polynomial over (F, v) with

p separable over F and e not divisible by the characteristic of F . If a Henselian extension

(K, u) of (F, v) has an element α with u(k(α)) > v(t), then k has a root in K.

In Remark 6B below we will see that when e 6= 1, the value v(t) is best possible in

Theorem 1.

Remarks 2. (A) The hypotheses of the first sentence of Theorem 1 guarantee that an

extension of F by a root of k is tamely ramified (cf. the proof of Lemma 4). One would

like a generalization of Theorem 1 allowing wild ramification. The Eisenstein polynomial

x2−2 over the valued field of 2–adic numbers (Q2, v2) has no root in Q2

[√
−6
]

even though

v2

(

(
√
−6)2 − 2

)

> v2(2). Thus as stated Theorem 1 is not valid without the hypotheses of

its first sentence.

(B) We will see below in the proof of Theorem 5 that the hypotheses of Theorem 1

imply that v(k′(α)) =
(

1 − 1

e

)

v(t). Thus if e ≤ 2, then we have v(k(α)) > 2v(k′(α)),

and hence the existence of a root of k in K follows from a standard version of Hensel’s

Lemma [2, Theorem 4.1.3(5), p. 88]. When e > 2 the application of Theorem 1 gives a

stronger result than the application of this version of Hensel’s Lemma. Similar remarks

hold for versions of Hensel’s Lemma involving the discriminant of f . For example the

Eisenstein polynomial x3 − 2 over (Q2, v2) has discriminant −108; applying the Hensel-

Rychlik Theorem of [4, Theorem 10.8, p. 263] to it gives a weaker result than applying

Theorem 1 since v2(−108) = v2(4) > v2(−2).

We will prove a modest generalization of Theorem 1 with an eye toward a more sweeping
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generalization (cf. Remark 8). We extend v to F [x] with the Gaussian valuation, so

v
(

∑

aix
i
)

= min
i

v(ai) for all ai ∈ F .

Notation 3. For the remainder of this paper k ∈ F [x] will be assumed to have the form

k = pe +
∑

i<e

Aip
i where e ≥ 1 and

(a) p ∈ A[x] is monic with p irreducible over F ;

(b) for all i < e, Ai ∈ A[x], deg Ai < deg p, and A0 6= 0;

(c) v(A0) 6∈ svF for any divisor s > 1 of e;

(d) ev(Ai) ≥ (e − i)v(A0) > 0 whenever i < e.

We also set f = deg p. Condition (c) above says that in the divisible hull of vF we have

(vF + Z1

e
v(A0) : vF ) = e and that when i 6= 0, the inequalities of (d) are strict.

Any generalized Schönemann polynomial k = pe + th is easily seen to satisfy the condi-

tions in Notation 3 above. (Since p is monic, there exist Bi ∈ A[x] of degree less than deg p

with h =
∑

i<e Bip
i; the fact that p ∤ h tells us that v(tB0) = v(t).) Polynomials satisfying

the conditions of Notation 3 with p separable over F are also considered by Khanduja and

Saha; in the next lemma we expand on their Theorem 1.1 [3, p. 38].

Lemma 4. (A) The polynomial k is irreducible over F , and if α is a root of k in some

algebraic extension of F , then v has a unique extension, say v′, to F [α] and the ramification

degree and ramification index of v′/v are f and e, respectively.

(B) If α is an element of some valued field extension (K, u) of (F, v) with u(k(α)) >

v(A0), then u(α) ≥ 0, p
(

α
)

= 0, u(p(α)e) = v(A0) = u(A0(α)) = u(
∑

i<e Ai(α)p(α)i),

and p(α)e/
∑

i<e Ai(α)p(α)i = −1.
3



Proof. We begin by proving (B). Pick any b ∈ F with v(b) = v(A0). Since valuation rings

are integrally closed, we have u(α) ≥ 0 (note that α is a root of k − k(α)). Since all the

coefficients of the polynomials Ai are in the maximal ideal of v, we have u(p(α)e) > 0,

so p
(

α
)

= 0. Because v(b) = v(A0) 6= ∞, thus b−1A0 is a nonzero polynomial of degree

less than that of p, the irreducible polynomial of α over F . Thus b−1A0(α) is a unit,

so v(A0) = v(b) = u(A0(α)). If u(p(α)e) > v(A0), then whenever 0 < i < e we have

u(Ai(α)) ≥ v(Ai) and hence

u(Ai(α)p(α)i) >
e − i

e
u(A0(α)) +

i

e
v(A0) = u(A0(α)) ,

so u(k(α)) = v(A0), a contradiction. On the other hand, if u(p(α)e) < v(A0), then for all

i < e we have

u(Ai(α)p(α)i) ≥ e − i

e
v(A0) + iu(p(α))

> (e − i)u(p(α)) + iu(p(α)) = u(p(α)e) ,

so u(k(α)) = u(p(α)e) < v(A0), another contradiction. Thus u(p(α)e) = v(A0). The last

assertions of (B) follow easily since u(p(α)eb−1) = 0 and by hypothesis

u

(

(p(α)e +
∑

Ai(α)p(α)i)b−1

)

= u(k(α)) − v(A0) > 0 .

We now apply the results of (B) to prove (A). Let v′ denote any extension of v to F [α].

We denote by fv′/v and ev′/v the ramification degree and index of v′/v, respectively. Part

B applied with u = v′ tells us that p(α) = 0, so fv′/v ≥ f . That (vF + Z1

ev(A0) : vF ) = e

shows that ev′/v ≥ e. But ef = deg k ≥ [F [α] : F ] ≥ ev′/vfv′/v ≥ ef so that e = ev′/v
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and f = fv′/v and deg k = [F [α] : F ]. Thus k is irreducible over F and v has a unique

extension to F [α]. �

Theorem 1 will be a corollary of:

Theorem 5. Suppose that p is separable over F and that e is not divisible by the charac-

teristic of F . Further suppose that there is an integer d > 0 with

(1) edv(Ai) > (e − i)(d + 1)v(A0) > 0

whenever 0 < i < e. If u(k(α)) > v(A0) for some element α of a Henselian extension

(K, u) of (F, v), then k has a root in K.

Remarks 6. (A) Working in the divisible hull of vF we can rewrite condition (1) in the

form

1

e − i
v(Ai) >

(

1 +
1

d

)(

1

e

)

v(A0) > 0 .

The existence of such an integer d is automatic when vF is rank one (as we observed

earlier, the inequalities of Notation 3(d) are strict when i > 0). The existence is also clear

if k is a generalized Schönemann polynomial (just set d = e), so that Theorem 1 is indeed

a corollary of Theorem 5.

(B) We now show that if e 6= 1, then the value v(A0) in Theorem 5 is best possible,

so that in particular the value v(t) in Theorem 1 is best possible. Let α be a root of p

in an algebraic extension (K, u) of a Henselization (F ′, v′) of (F, v). Since (F ′, v′) is an

immediate extension of (F, v), the conditions of Notation 3 hold with (F, v) replaced by

(F ′, v′), so k is irreducible over F ′ by Lemma 4. We have u(α) ≥ 0 since p ∈ A[x], and
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hence u(k(α)) = u(A0(α)) ≥ v(A0) . However the Henselian extension F ′[α] of F cannot

have a root of k since k has degree ef , but α generates an extension of F ′ of degree only

f .

Proof of Theorem 5. We will use Lemma 4B repeatedly, and usually only implicitly. Ob-

serve that p′(α) is a unit since p is irreducible and separable over F with root α. We now

show that u(k′(α)) =
(

1 − 1

e

)

v(A0). We may write

(2) k′(α) = ep(α)e−1p′(α) +
∑

i<e

(Ai(α)ip(α)i−1p′(α) + A′

i(α)p(α)i) .

Since char F ∤ e and p′(α) is a unit, we have u
(

epe−1(α)p′(α)
)

=
(

1 − 1

e

)

v(A0). It suffices

to show that the other terms of (2) have larger values. If 0 < i < e we have

u(Ai(α)ip(α)i−1p′(α)) ≥ v(Ai) + (i − 1)
1

e
v(A0)

>
(e − i

e

)

v(A0) +
( i − 1

e

)

v(A0) =
(

1 − 1

e

)

v(A0) ,

and since the coefficients of A′

i are integer multiples of those of Ai, we have

u(A′

i(α)pi(α)) ≥ v(Ai) + iu(p(α)) ≥ v(A0) >
(

1 − 1

e

)

v(A0).

Finally, u(A′

0
(α)) ≥ v(A0) >

(

1 − 1

e

)

v(A0). Thus indeed u(k′(α)) =
(

1 − 1

e

)

v(A0).

Let us write r = −
∑

i<e

Aip
i, so k = pe−r. By the Lemma p(α) 6= 0 and r(α)/p(α)e = 1.

Since char F ∤ e, we may apply Hensel’s Lemma to Xe − r(α)/p(α)e to show the existence

of η ∈ K with η = 1 and ηe = r(α)/p(α)e, i.e., r(α) = (ηp(α))e. Applying Hensel’s Lemma

to p − ηp(α) we deduce the existence of δ ∈ K with δ = α and p(δ) = ηp(α) (recall that

u(p(α)) > 0). Then p(δ)e − r(α) = 0. We may assume without loss of generality that
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p(α) 6= p(δ) (and hence that α 6= δ) since otherwise

k(α) = p(α)e − r(α) = p(δ)e − r(α) = 0 ,

proving the theorem in this case.

We claim that u(p(α) − p(δ)) = u(α − δ). If α is not a unit, then p is monic and

linear (since p(α) = 0), and hence p(α) − p(δ) = α − δ. Suppose that α is a unit. Write

p =
∑

bix
i, and set

ξ =
∑

biα
i−1

(

1 +

(

δ

α

)

+ · · · +
(

δ

α

)i−1
)

.

Since δ/α = 1, the separability of p implies that ξ = p ′(α) 6= 0. But p(α)−p(δ) = (α−δ)ξ,

so that in this case we also have u(p(α) − p(δ)) = u(α − δ).

Now note that

k(α) = p(α)e − p(δ)e + p(δ)e − r(α)

= p(α)e − p(δ)e = p(α)e(1 − ηe)

= p(α)e−1(p(α) − p(δ))(1 + η + · · · ηe−1) .

Since η = 1 and the characteristic of F does not divide e, therefore 1 + η + · · ·+ ηe−1 is a

unit and hence

(3) u(k(α)) = (e − 1)u(p(α)) + u(α − δ) =

(

1 − 1

e

)

v(A0) + u(α − δ) .

We next estimate u(k(δ)). Note that

k(δ) = pe(δ) − r(δ) + r(α) − r(α)

= r(α) − r(δ) =
∑

i<e

Ai(δ)p(δ)i − Ai(α)p(α)i .
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Each Ai is a sum of terms of the form cxj where 0 ≤ j < f , c ∈ F , and

v(c) ≥ v(Ai) ≥
(

1 − i

e

)(

1 +
1

d

)

v(A0) ,

so k(δ) is a sum of terms of the form

cδjp(δ)i − cαjp(α)i = c
(

δj(p(δ)i − p(α)i
)

+ p(α)i
(

δj − αj)
)

.

Arguing as above and using equation (3) we calculate that if e > i > 0, then

u
(

cδj(p(δ)i − p(α)i)
)

≥ v(c) + u
(

p(α)i−1(p(α) − p(δ))(1 + η + · · · + ηi−1)
)

≥
((

1 − i

e

)(

1 +
1

d

)

+
i − 1

e

)

v(A0) + u(α − δ)

= u(k(α)) +

((

1 − i

e

)(

1 +
1

d

)

+
i − 1

e
−
(

1 − 1

e

))

v(A0)

= u(k(α)) +
e − i

de
v(A0) ≥ u(k(α)) +

1

de
v(A0) ,

and similarly that if j > 0 then

u
(

c(p(α)i(δj − αj))
)

≥
((

1 − i

e

)(

1 +
1

d

))

v(A0) +
i

e
v(A0) + u(α − δ)

≥ u(k(α)) +
1

de
v(A0) .

Combining these inequalities we have

u(k(δ)) ≥ u(k(α)) +
1

de
v(A0) .

To summarize, we have shown that for any α in K with u(k(α)) > v(A0) we have

u(k′(α)) =
(

1− 1

e

)

v(A0) and we can find an α′ in K with u(k(α′)) ≥ u(k(α))+ 1

dev(A0) >
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v(A0) (so that u(k′(α′)) =
(

1 − 1

e

)

v(A0)). Thus we can find α′′ in K with u(k(α′′)) ≥

u(k(α′)) + 1

dev(A0) ≥ u(k(α)) + 2

dev(A0) and u(k′(α′′)) =
(

1 − 1

e

)

v(A0). Continuing in

this manner we can find an element α∗ ∈ K with

u(k(α∗)) > 2

(

1 − 1

e

)

v(A0) = 2u(k′(α∗)) ,

so that by a standard version of Hensel’s Lemma [2, Theorem 4.1.3(5), p. 88], k has a root

in K. �

We record a corollary to Theorem 5. We continue the hypotheses of Notation 3.

Corollary 7. Suppose that (F, v) is Henselian and that a finite degree tamely ramified

extension (K, u) of (F, v) has an element α satisfying u(k(α)) > v(A0) . Then k has a zero

in K.

Proof. The “tame” hypothesis means that [K : F ] =
[

K : F
]

(vK : vF ), that K/F is

separable, and that the characteristic of F does not divide (uK : vF ). Then by Lemma

4, p must be separable over F and the characteristic of F cannot divide e (a divisor of

(uK : vF )). Theorem 5 then implies our result. �

Remark 8. We plan to generalize the above Corollary (but not Theorem 5 itself) to a class

of irreducible polynomials over F which when (F, v) is a maximal field is precisely the class

of monic irreducible polynomials. In this generalization the role of the values v(A0) would

be essentially played by the invariants “γf” of [1, p. 466].
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