Nonstandard Analysis and Groups (mainly results of G. Keller)

(I) GROUPS

1. \(H \subseteq G \) generates \(G \) if \(G \) is the smallest subgroup of \(G \) which contains \(H \).

2. If \(e \in H = H^{-1} \), then \(H \) generates \(G \) provided \(G = \bigcup_n H^n \).

3. \(G \) is finitely generated provided there is a finite \(H \) which generates \(G \).

4. A word \(w(x_1, x_2, \ldots, x_n) \) is an identity relation (or law) for \(G \) provided \(\forall a_1, \ldots, a_n \in G, w(a_1, \ldots, a_n) = e \).

5. If \(L \) is a set of words, then \(V(L) \) = the variety for \(L \) = the class of all groups satisfying every law in \(L \).

6. If \(V \) is a variety of groups, \(F_n(V) \) is the reduced free group on \(n \) generators (i.e., the quotient of \(F_n \) by all the laws defining \(V \)).

7. The group \(G \) is amenable if there is a nontrivial left-invariant finitely-invariant measure on \((G, \mathcal{P}(G)) \).

8. Theorem (Følner): \(G \) is amenable if and only if:

\[
\forall A \subseteq G \text{ finite } \forall r < 1 \exists E \subseteq G \text{ finite } \forall a \in A \frac{|E \cap aE|}{|E|} > r
\]

9. EG: \(\mathbb{Z}, SL(1, \mathbb{R}), SL(2, \mathbb{R}) \) are amenable; \(F_2 \) is not amenable; a group \(G \subseteq SL(n, \mathbb{R}) \) of isometries of \(\mathbb{R}^n \) is amenable if and only if \(F_2 \not\subseteq G \); homomorphic images and subgroups of amenable groups are amenable.

10. Call a group \(G \) uniformly Følner, or uniformly amenable (UA) if \(|E| \) can be chosen to depend only on \(|A| \) and \(r \), that is, if there is a function \(F : \mathbb{N} \times (0,1) \rightarrow \mathbb{N} \) such that

\[
\forall n \in \mathbb{N} \forall A \subseteq G \text{ s.t. } |A| < n \forall r < 1 \exists E \subseteq G \text{ s.t. } |E| < F(n, r) \text{ and } \forall a \in A \frac{|E \cap aE|}{|E|} > r
\]
11. A class \mathcal{D} of groups is uniformly amenable if there is a single function $F : \mathbb{N} \times (0,1) \to \mathbb{N}$ that witnesses UA for all the groups in \mathcal{D}.

(II) Nonstandard Analysis

Start with a mathematical universe (superstructure) V, containing:

- All natural numbers $0, 1, 2, \ldots$; real numbers $\sqrt{2}, \pi, e, \phi, \ldots$; etc.
- The set \mathbb{N} of natural numbers as an object; the set \mathbb{R} of real numbers; etc.
- Every function from \mathbb{R} to \mathbb{R}, and the set of all such functions
- Your favorite groups, Banach spaces, etc
- Every other mathematical object we might want to talk about
- Closure under ϵ, \mathcal{P}, etc.

We call the elements of this mathematical universe standard.

Extend to a nonstandard mathematical universe *V:

- For every object A in V, there is a corresponding object *A in *V
- EG, *V has objects $^*\mathbb{N}$, $^*\mathbb{R}$, $^*\sin(x)$, etc.
- (For simplicity, we drop the stars from simple objects like numbers: 12 instead of *12 etc)
- There may (generally will) be many more objects in *V than in V
- An element of *V that is not in V is called nonstandard.

The extension should satisfy two important properties:

Transfer If S is a bounded first-order statement about objects in V, then S is true in V if and only if it true in *V.

For example, let (G, \cdot, e) be a multiplicative group; the following are true in V:
\((\forall x \in G)(\exists y \in G)[(x \cdot y = e) \land (y \cdot x = e)]\)
\((\forall x \in G)[(x \cdot e = x) \land (x \cdot e = x)]\)
\((\forall x \in G)(\forall y \in G)(\forall z \in G)[(x \cdot y) \cdot z = x \cdot (y \cdot z)]\)

By transfer it follows:
\((\forall x \in ^{*}G)(\exists y \in ^{*}G)[(x^* \cdot y = ^{*}e) \land (y^* \cdot x = ^{*}e)]\)
\((\forall x \in ^{*}G)[(x^* \cdot e = x) \land (x^* \cdot e = x)]\)
\((\forall x \in ^{*}G)(\forall y \in ^{*}G)(\forall z \in ^{*}G)[(x^* \cdot y)^* \cdot z = x^* \cdot (y^* \cdot z)]\)

In other words, \(^{*}G\) is also not only a \(^{*}\)group, but also an actual group.

As another example, since 12 is an element of \(\mathbb{N}\), \(^{*}12\) is an element of \(^{*}\mathbb{N}\).

Since we can think of the basic elements (like \(^{*}12\)) of \(^{*}\mathbb{V}\) as just being
the same as their counterparts (like 12) in \(\mathbb{V}\), \(^{*}\mathbb{N}\) is a superset of \(\mathbb{N}\).

Similarly, for any standard set \(A\) which is an object of \(\mathbb{V}\), the set \(^{*}A\) in
\(^{*}\mathbb{V}\) extends the set \(A\).

Saturation:

A set \(a \subseteq ^{*}\mathbb{V}\) is internal if \(\exists b \in \mathbb{V} \ a \in ^{*} b\) (otherwise it is external)

For example, if \(A \in \mathbb{V}\) then \(\mathcal{P}(A) \in \mathbb{V}\), so \(^{*}A \in ^{*}\mathcal{P}(A)\) holds, and \(^{*}A\) is internal.

Equivalently, a set \(a\) is internal if it can be defined from other internal
sets by a bounded first-order formula.

Now, \(\kappa\)-saturation is the property:

If \(\mathcal{A}\) is a set of sets with the finite intersection property, and \(|\mathcal{A}| < \kappa\),
then \(\bigcap \mathcal{A} \neq \emptyset\).

Equivalently, any set of statements of cardinality < \(\kappa\) about an object \(X\)
which is finitely satisfiable in \(^{*}\mathbb{V}\), can all be simultaneously satisfied
by a single object in \(^{*}\mathbb{V}\).
We will always assume that the model is \(\kappa \)-saturated for \(\kappa \) bigger than the cardinality of every standard set (though much less saturation usually suffices).

Saturation roughly means: Anything that can happen in \(\ast V \), does happen.

Example: Consider the statements:

- \(x \) is a real number
- \(x > 0 \)
- \(x < 1 \)
- \(x < 1/2 \)
- \(x < 1/3 \)
- \(x < 1/4 \)

Any finite set of these statements refers to a smallest fraction \(1/N \); but

then, \(x = \frac{1}{N+1} \) satisfies this finite set of statements.

It follows that there is a an element of \(\ast \mathbb{R} \), call it \(\epsilon \), such that

\[\epsilon > 0 \]

and, for every (standard) natural number \(N \),

\[\epsilon < 1/N \]

We have proved that \(\ast \mathbb{R} \) contains nonzero infinitesimals, where

Definition: An infinitesimal is an element \(\epsilon \) of \(\ast \mathbb{R} \) such that

\[|\epsilon| < 1/N \]

for every natural number \(N \) in \(\mathbb{N} \)

Since \(\ast \mathbb{R} \) (sometimes called the set of “hyperreal numbers”) is, like the usual set of real numbers, closed under the basic arithmetic operations, it also contains negative infinitesimals (like \(-\epsilon \)), infinite numbers (like \(1/\epsilon \)), and many other objects:
In particular, as we have seen there are elements of \mathbb{N}^* which are bigger than every element of \mathbb{N}; in other words, there are infinite integers.

Many applications are based on the ubiquity of “hyperfinite sets”

Definition: A set E in \mathbb{V}^* is hyperfinite if there is a *one-to-one correspondence* between E and $\{0, 1, 2, \ldots, H\}$ for some H in \mathbb{N}^*. Equivalently, if the mathematical statement “E is finite” holds in \mathbb{V}.

Examples:
1. Every finite set is hyperfinite.
2. If H is an infinite integer, $\{0, 1, 2, \ldots, H\} = \{n \in \mathbb{N}^* : n \leq H\}$ is a hyperfinite subset of \mathbb{N}^*.
3. If H is an infinite integer, $\{0, \frac{1}{H}, \frac{2}{H}, \ldots, \frac{H-1}{H}, 1\}$ is a hyperfinite subset of $\mathbb{V}^*[0,1]$.

Theorem: If A is an infinite set in \mathbb{V}, then there is a hyperfinite set \hat{A} in \mathbb{V}^* such that every element of A is in \hat{A}.

Proof: Consider the statements: (i) X is finite; (ii) $a \in X$ (one such statement for every element a of A).

Given any finite number of these statements, a corresponding finite number $\{a_1, \ldots, a_n\}$ of elements of A are mentioned, so $X = \{a_1, \ldots, a_n\}$ satisfies those statements. By the saturation principle, there is therefore a set X in \mathbb{V} satisfying all the statements simultaneously; let \hat{A} be this X. ◼

Corollary: There is a hyperfinite set containing \mathbb{R}.

“Nonstandard analysis is the art of making infinite sets finite by extending them.” —M. Richter
Goal: **Theorem:** let V be a variety of groups. Then V is UA iff V is amenable.

Nonstandard motivation:

Let G be a group, and suppose the group *G is (externally) amenable. That is, there is a measure $\mu : \mathcal{P}(^*G) \to \mathbb{R}$ such that

$$(\forall g \in ^*G)[\mu(E) = \mu(aE)]$$

Then $\nu(A) := \mu(^*A)$ is evidently a left-invariant measure on G. This proves:

Proposition: If *G is amenable then G is amenable.

Question: Does G amenable imply *G is amenable?

Answer: No. Example later.

Theorem: Let G be a group. TFAE: (1) G is UA; (2) *G is UA; (3) *G is amenable.

Proof. (1 \Rightarrow 2) Let F witness UA of G. Claim: F witnesses UA of *G as well. Let n, r be given, and let $A \subseteq ^*G$ with $|A| < n$. By transfer, $^*F : \mathbb{N} \times (0, 1) \to ^*\mathbb{N}$ witnesses *UA, so

$$\exists E \in ^*\mathcal{P}(G), |E| \leq ^*F(n, r) \ \& \ \forall a \in A \ \frac{|E \cap aE|}{|E|} > r.$$

Note that an internal subset E of *G which has internal cardinality $\leq ^*F(n, r)$ is externally finite with an actual, standard finite cardinality less than $F(n, r)$, since n and r are standard and $^*F(n, r) = F(n, r)$. This proves the claim.

(2 \Rightarrow 3) is trivial.

(3 \Rightarrow 1) Let $n \in \mathbb{N}, r < 1$ be given. We need to define $F(n, r)$. Let $m \in ^*\mathbb{N} \setminus \mathbb{N}$. By amenability of *G and the Følner condition,

$$\forall A \in \mathcal{P}(G) |A| < n \Rightarrow \exists E \in \mathcal{P}(G), |E| \text{ finite} \ & \ \forall a \in A \ \frac{|E \cap aE|}{|E|} > r.$$
Since any subset of *G with (standard) finite cardinality is internal, and any finite set has cardinality less than m, it follows that

\[\exists m \in ^* \mathbb{N} \forall A \in ^* \mathcal{P}(G) |A| < n \Rightarrow \exists E \in ^* \mathcal{P}(G), |E| \text{ finite } \& \forall a \in A \frac{|E \cap aE|}{|E|} > r. \]

By transfer, there is a standard finite m that works for this n and r; put $F(n, r) := m$.

Corollary A subgroup or homeomorphic image of a UA group is UA.

Proof. If H is a subgroup of G, and G is UA, then *G is amenable, *H must (as an external group) be amenable, so H is UA. A similar argument works for homeomorphic images (since the homeomorphic image of an amenable group is amenable).

Theorem Let \mathcal{G} be a set of groups; then \mathcal{G} is uniformly amenable iff $^*\mathcal{G}$ is amenable.

Proof. (\Rightarrow) If F witnesses UA for \mathcal{G} then it witnesses amenability for every $G \in ^* \mathcal{G}$ as in the proof of the last theorem.

(\Leftarrow) Fix $n \in \mathbb{N}, r < 1$ be given. We need to define $F(n, r)$ and $m \in ^* \mathbb{N} \setminus \mathbb{N}$. By amenability of $^*\mathcal{G}$ and the Følner condition, m witnesses

\[\exists m \in ^* \mathbb{N} \forall G \in ^* \mathcal{G} \forall A \in ^* \mathcal{P}(G) |A| < n \Rightarrow \exists E \in ^* \mathcal{P}(G), |E| \text{ finite } \& \forall a \in A \frac{|E \cap aE|}{|E|} > r \]

as above. By transfer, there is a standard finite m that works for this n and r; put $F(n, r) := m$.

Proposition If \mathcal{V} is a variety of groups and $\mathcal{G} \subseteq \mathcal{V}$ then $^*\mathcal{G} \subseteq \mathcal{V}$

Proof. Let $\ell : w(x_1, \ldots, x_n)$ be a law for \mathcal{V}, that is, $\ell \in \mathcal{L}$ where $\mathcal{V} = \mathcal{V}(\mathcal{L})$. Now,

\[\forall G \in \mathcal{G} \forall g_1, \ldots, g_n \in G \ [w(g_1, \ldots, g_n) = e] \]

so by transfer,

\[\forall G \in ^* \mathcal{G} \forall g_1, \ldots, g_n \in G \ [w(g_1, \ldots, g_n) = e] \]

so every $G \in ^* \mathcal{G}$ satisfies ℓ. Since ℓ was arbitrary in \mathcal{L}, $^*\mathcal{G} \subseteq \mathcal{V}$.

7
Corollary Let V be a variety of groups. Then V is UA iff V is amenable.

Proof. (\Leftarrow) is trivial. (\Rightarrow) Let $\mathcal{F} = N \times (0, 1)^N$ be the set of all functions from $N \times (0, 1)$ to N. Suppose V is not UA, then for every $F \in \mathcal{F}$ there is a $G_F \in V$ such that F does not witness UA for G_F. Let $\mathcal{G} = \{G_F\}_{F \in \mathcal{F}}$. Clearly \mathcal{G} is not UA, so $^{*}\mathcal{G}$ is not amenable. But $^{*}\mathcal{G} \subseteq V$ by the last proposition, so V is not amenable.
An example

Let $G = \{ \pi \in \text{Permutations}(\mathbb{N}) : \exists N \in \mathbb{N} \forall x > N \ x(\pi) = x \}$.

Claim 1: G is amenable. One way to see this is to note that every finitely-generated subgroup of G is finite, so trivially amenable, and by standard nonsense this implies that G is amenable. Or, use Følner: Let $A = \{ a_1, \ldots, a_n \} \subseteq G, r < 1$. For some sufficiently large N and all $x < N$ and $i \leq n$, $a_i(x) = x$. let $E = \{ 0, \ldots, M \}$, where $M > (N + r + 1)/(1 - r)$. Now, if $a \in A$ then $E \cap aE \supseteq \{ N + 1, \ldots, M \}$, so $\frac{|E \cap aE|}{|E|} \geq (M - N - 1)M + 1 > r$ by the choice of M.

Claim 2: $\ast G$ is not amenable. It suffices to find $F_2 \subseteq \ast G$, where F_2 is freely generated by $\{ a, b \}$. Let $M \in^* \mathbb{N} \setminus \mathbb{N}$, let \hat{F} be the (internal) set of all words of length at most M from $\{ a, b, a^{-1}, b^{-1} \}$. Write $\hat{F} = \{ f_0, \ldots, f_{H-1} \}$ (where H is the internal cardinality of \hat{F}, and $f_0 = e$), and identify this set with $\{ 0, \ldots, H - 1 \}$. Let $\hat{F}_a = \{ g \in \hat{F} | ag \in \hat{F} \}$, and $\hat{F}_b = \{ g \in \hat{F} | bg \in \hat{F} \}$. There is an internal bijection $\hat{a} : \hat{F} \to \hat{F}$ such that $\hat{a}(g) = ag$ for every $g \in \hat{F}_a$. Same for \hat{b}. Note $F_2 \subseteq \hat{F}_a \cap \hat{F}_b$. By the identification above, $\hat{a}, \hat{b} \in^* G$. Claim: if $w(x, y)$ is a word and $f_i \in F_2$, then $w(a, b)f_i = f_{w(\hat{a}, \hat{b})(i)}$. The proof is an easy induction on the length of w. It follows that if $w(\hat{a}, \hat{b}) = id$ then $w(a, b) = e$, and this proves that \hat{a} and \hat{b} generate a free group.

Thus, G is an example of a group which is amenable but not UA.