1. Given \(x^2 + y^2 = 25 \), find \(y'' \) without solving the original equation for \(y \) in terms of \(x \).

2. Find the tangent line to the kappa curve given by \(x^2(x^2 + y^2) = y^2 \) at the point \((\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}) \).

3. Sand falls onto a conical pile at a rate of 10 cubic feet per minute. The diameter of the base of the cone is approximately 3 times the altitude. At what rate is the height changing when that height is 15 feet? (The volume of a cone is \(\pi \times (\text{base radius})^2 \times (\text{height}) \).)

4. Find the extrema of \(f(x) = 3x^4 - 4x^2 \) on the interval \([-1, 2]\).

5. Given the function \(f(x) = \frac{1}{x^2 - 2} \), show that for the interval \((2, 6)\) there is no \(c \) such that \(f'(c) = \frac{f(6) - f(2)}{6 - 2} \). Why does this not contradict the Mean Value Theorem?

6. For the following functions, identify the critical points, the relative extrema, and the intervals on which \(f \) is increasing and decreasing: (a) \(f(x) = (x^2 - 4)^{2/3} \); (b) \(\frac{2x}{x^2 + 3} \).

7. Find the points on the curve \(y = 4 - x^2 \) that are closest to the point \((0, 2)\).

8. An open box is made from a square piece of material, 12 inches on a side, by cutting equal squares from each corner and bending the sides up. What is the largest volume of a box constructed in this way?

9. Estimate \(f(3.1) \) where \(f(x) = \frac{x}{x+1} \).

10. If \(x = 3t^2 + 1 \) and \(y = \sin(4\pi t) \) find \(\frac{dy}{dt} \) when \(t = 1 \).

11. Show that the equation \(x^4 + 2x^2 - 2 = 0 \) has exactly one solution on \([0, 1]\).

12. State and prove the Mean Value Theorem. You may use Rolle’s Theorem in your proof.