(NOTE: Solutions below all assume all measures are positive.)
(1)

$$
\lambda \perp \mu \Rightarrow \exists A, B \quad A \cup B=X \quad \&_{1} A \cap B=\varnothing \quad \text { \& } \lambda A=\mu=
$$

Since $\mu B=0$ and $\lambda \ll \mu, \lambda B=0 \therefore \lambda(X)=\lambda(A \cup B)=\lambda(A)+\lambda(B)=0$
(2)
a) $\mu \varnothing=\sum 2^{-n} \mu \emptyset=\sum 2^{-n} \cdot 0=0$

$$
\mu\left(\bigcup_{k}^{0} A_{k}\right)=\sum_{n} 2^{-n} \mu_{n}\left(\bigcup_{k}^{0} A_{k}\right)=\sum_{n} 2^{-n} \sum_{k} \mu_{n} A_{k}=\sum_{k} \sum_{n} 2^{-n} \mu_{n} A_{k}=\sum_{k} \mu A_{k}
$$

b) $\mu A=0 \Rightarrow 2^{-n} \mu_{n} A \leq \sum_{n} 2^{-n} \mu_{n} A=\mu A=0$, so $\mu_{n} A=0$
c) If $E \in Q$, $\int_{E} \sum_{n} 2^{-n} \frac{d \mu_{n}}{d \lambda} d \lambda \leq \sum_{n} 2^{-n} \int_{E} \frac{d \mu_{n}}{d \lambda} d \lambda \quad$ (by McT)$=\sum_{n} 2^{-n} \mu_{n} E=\mu E$

So $\sum_{n} 2^{-n} \frac{d \mu n}{d \lambda}=\frac{d \mu}{d \lambda}$ are. by the uniqueness property of $R-N$ derivatives.
(3)

$$
\begin{aligned}
& \lambda E=0 \Rightarrow \mu E=\nu E=0 \Rightarrow(\mu+\nu)(E)=0 \therefore(\mu+\nu) \ll \lambda \\
& \int_{E}\left(\frac{d \mu}{d \lambda}+\frac{d \nu}{d \lambda}\right) d \lambda=\int_{E} \frac{d \mu}{d \lambda} d \lambda+\int_{E} \frac{d \nu}{d \lambda} d \lambda=\mu E+\nu E=(\mu+\nu) E
\end{aligned}
$$

(4)

$$
\begin{aligned}
& \lambda E=0 \Rightarrow \nu E=0(\sin (e \nu \angle<\lambda) \Rightarrow \mu E \leq \nu E=0 \text { so } \mu E=0 \\
& \int_{E}\left(\frac{d \nu}{d \lambda}-\frac{d \mu}{d \lambda}\right) d \lambda=\int_{E} \frac{d \nu}{d \lambda} d \lambda-\int_{E} \frac{d \mu}{d \lambda} d \lambda=\nu E-\mu E \geqslant 0 \text { for any } E \in Q \\
& \therefore \frac{d \nu}{d \lambda}-\frac{d \mu}{d \lambda} \geqslant 0 \text {, or } \frac{d \nu}{d \lambda} \geqslant \frac{d \mu}{d \lambda}
\end{aligned}
$$

