Here is everything you really need to know about ordinals:

1. The definition: An ordinal number is a set \(\alpha \) such that (i) the elements of \(\alpha \) are well-ordered (by \(\epsilon \)), and (ii) (transitivity) if \(x \in y \in \alpha \) then \(x \in \alpha \)

2. It follows that every element of an ordinal \(\alpha \) is also a subset of \(\alpha \), and is in fact an ordinal itself.

3. Ordinals satisfy trichotomy, so any set of ordinals is linearly ordered.

4. There is a first ordinal (namely, \(\emptyset \)), but no last ordinal: in fact, if \(a \) is an ordinal, so is \(a \cup \{a\} \) (show this!), which we call the successor of \(a \), and denote by \(a^+ \). Note there is no ordinal strictly between \(a \) and \(a^+ \), so \(a^+ \) is the immediate successor of \(a \).

5. Any set of ordinals is well ordered; any nonempty collection of ordinals has a least element.

6. The natural numbers are (finite) ordinals:
 \[
 0 = \emptyset, 1 = \{\emptyset\} = \{0\}, 2 = \{0, 1\}, \ldots, n + 1 = \{0, 1, \ldots, n\}, \ldots
 \]

7. The set of natural numbers is also an ordinal, which we denote by \(\omega \) (so “\(n < \omega \)” is just a strange way of writing “\(n \in \mathbb{N} \)”). \(\omega \) is the least infinite ordinal, and is of course a countable ordinal.

8. There are many other countable ordinals. Examples include \(\omega^+ \), \(\omega + \omega \) (whatever that is), etc.

9. The first uncountable ordinal is denoted by \(\omega_1 \). To show that such an ordinal even exists requires a bit of work! In fact, \(\omega_1 \) is just the set of all countable ordinals.
10. Every well-ordered set is order-isomorphic to a unique ordinal.

11. By the Axiom of Choice, every set X can be well-ordered, so has the same cardinality as some ordinal. The least such ordinal is the cardinality of X, or $\text{card}(X)$. The fact that every set has a cardinality is actually equivalent to AC. If $\kappa = \text{card}(X)$ then we can write $X = \{x_i\}_{i<\kappa}$, where all the elements x_i are distinct.

12. (Extremely Useful) If $\{a_n\}_{n<\omega}$ is a set of countable ordinals, then for some $\beta < \omega_1$, $\forall n < \omega \ a_n < \beta$.