
MATH 411 LINEAR ALGEBRA

Abstract. This is meant to be a study guide emphasizing the main ideas of the
course. It is not meant to be a complete list of everything covered or everything
you should know. It should also serve as a list of notations, some of which are hard
to find in the book.

1. A note on linear algebra terminology

Some words in linear algebra are different than they are for the same concept in
more general abstract algebra. This is a list of some of these more specialize terms:

• span — generate
• spanning set — generating set
• linear transformation — homomorphism
• null space — kernel
• vector space over a field — module over a ring (Section 5)
• direct sum — coproduct

2. Definitions and notation as they are presented in class

• polynomial
• degree
• monic polynomial (leading coefficient is 1)
• vector space over a field F , where F might be R (the real numbers, C (the

complex numbers), Q (the rational numbers) or Z2 = {0, 1}.
• F n denotes the vector space of n-tuples of elements from F and Fm×n denotes

the set of all m × n matrices with entries in F (page 29). C(X,F ) denotes
the vector space of F -valued functions defined on a set X.
• subspace
• linear combination
• linearly dependent and linearly independent
• spanning set or generating set. Definition 4.6 uses S(T ) for the subspace

spanned by the set T .
• basis
• dimension, the number of elements in a basis.
• linear transformation
• isomorphism
• direct sum of two subspaces of a vector space.
• complementary subspace
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• quotient space of a vector space modulo a subspace.
• kernel or null space of a linear transformation.
• rank of a linear transformation is the dimension of the range.
• linear functional
• L(V,W ) denotes the vector space of all linear transformations from V into
W .
• dual space V ∗ = L(V, F ) of a vector space V .
• dual basis
• For S a subset of V , the annihilator of S is
S◦ = { f ∈ V ∗ | f(s) = 0 for all s ∈ S }
• inner product, inner product space, Euclidean space, unitary space.
• The norm of a vector v is ‖v‖ =

√
(v|v).

• metric
• x ⊥ y means x is orthogonal to y. S⊥ = {x | x ⊥ S }.
• orthonormal basis
• similar matrices
• change of basis matrix
• transpose of a linear transformation
• adjoint of a linear transformation
• permutation
• determinant, minor and cofactor of a matrix
• classical adjoint of a matrix
• eigenvalue, eigenvector, eigenspace
• characteristic polynomial, minimal polynomial of a matrix or a linear trans-

formation.
• A matrix is diagonalizable if it is similar to a diagonal matrix. A linear trans-

formation is diagonalizable if there is a basis in which its matrix is diagonal.

3. Main theorems as they are presented in class

Theorem 3.1. Polynomial theorems.

(1) Division algorithm for polynomials
(2) Euclidean algorithm (for finding greatest common divisors)
(3) Unique factorization theorem for polynomials

Theorem 3.2. A nonempty subset W of a vector space V over a field F is a subspace
of V iff

a1w1 + a2w2 ∈ W for all ai ∈ F, wi ∈ W .

Theorem 3.3. Any spanning set S of a vector space V contains a basis.



MATH 411 LINEAR ALGEBRA 3

Proof. The zero space has the empty set as a basis, so we may assume that V 6= {0}.
Let

L = {K ⊂ S | K is linearly independent }
The set L is nonempty (since sets of one vector are linearly independent) and is
partially ordered by set inclusion.

For any totally ordered subset {Kα} of L, let K0 =
⋃
Kα. We claim K0 is an upper

bound for the set {Kα} in L. It certainly contains all the sets Kα, so we need to
show that it is linearly independent. Assume that there is an equation

∑n
i=1 ciui = 0

with ci ∈ F and ui ∈ K0. The each ui is in some set Kαi
in the union. Since {Kα} is

totally ordered, we may order the subscripts so that Kα1 ⊂ Kα2 ⊂ · · · ⊂ Kαn . Then
all ui ∈ Kαn , which is a linearly independent set. Therefore all ci = 0 as desired.

We now apply Zorn’s Lemma to conclude that L has a maximal element B. We
claim that B is a basis for V . By definition of L, the set B is contained in the
generating set S and is linearly independent. If B = S, then it spans V . If not, there
is some element v ∈ S with v /∈ B. If v were not a linear combination of elements
in B, then we could make a larger linearly independent set in L, namely B ∪ {v},
contradicting the maximality of B. Thus any element of the spanning set S can be
written as a linear combination of elements of B, and therefore B also spans V , hence
is a basis. �

Theorem 3.4. Any linearly independent set can be extended to a basis.

Theorem 3.5. The following are equivalent:

(1) B is a basis for V .
(2) B is a maximal linearly independent set in V .
(3) B is a minimal spanning set for V .

Theorem 3.6. Any two bases for a vector space V have the same cardinality.

Proof. Let B = {vi}i∈I and C = {wj}j∈J be two bases for V . If either I or J is finite,
the sets have the same cardinality as in the proof in the book for finite dimensional
spaces. Thus we may assume that both sets are infinite. For each i ∈ I, write

vi = a1wj1 + · · · arwjr (ai ∈ F )

Every element of C occurs in such an expression, for otherwise that w which did not
occur could be written in terms of the basis {vi}i∈I , and in turn back in terms of
other wj’s contradicting the linear independence of C.

Now define a correspondence

i←→ {j1, . . . , jr} ⊂ J

That is, we have a mapping from I into the collection of finite subsets of J . It
follows from set theory that J has cardinality less than or equal to the cardinality
of I [Bourbaki, Theory of Sets III.6.4, Prop. 5]. Reverse the roles of I and J to see
that |I| ≤ |J | and therefore |I| = |J |. �
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Theorem 3.7. Any two vector spaces of the same dimension over a field F are
isomorphic.

Theorem 3.8. If U and W are finite dimensional subspaces of a vector space V ,
then

dim(U +W ) = dimU + dimW − dim(U ∩W ) .

Theorem 3.9. If W is a subspace of V , then there is a complementary subspace U ;
that is V = U +W and U ∩W = {0}.

Theorem 3.10. Let W be a subspace of V with quotient mapping T : V → V/W . A
subspace U is a complement to W iff T |U : U → V/W is an isomorphism.

Theorem 3.11. A linear transformation T : V → W is one-to-one iff kerT = {0}.
If dimV = dimW = n, then the following are equivalent:

(1) T is an isomorphism.
(2) T is one-to-one.
(3) kerT = {0}.
(4) T is onto.

Theorem 3.12 (The “usual” homomorphism results all hold). Let T : V → W be a
linear transformation between vector spaces V and W . Then

• The image (or range) of T , im(T ), is a subspace of W .
• V/ ker(T ) is isomorphic to im(T ).
• If T is onto, then there exists a one-to-one correspondence between subspaces

of W and subspaces of V containing ker(T ).

For a finite dimentional vector space V and a linear transformation T : V → W , the
book uses the terms nullity for dim kerT and rank for dim imT . Since V/ ker(T ) ∼=
im(T ), we obtain dimV − dim kerT = dim imT , or dimV equals the rank plus the
nullity of T .

Theorem 3.13 (Linear transformations and matrices). Let V be a vector space with
ordered basis S = {v1, . . . , vn} and let W be a vector space with ordered basis T =
{w1, . . . , wm}, m,n > 0. Let L : V → W be a linear transformation. Let A be the
m × n matrix with jth column equal to the coordinate vector [L(vj)]T of L(vj) with
respect to the basis T . If w = L(v) for some v ∈ V , then [w]T = A[v]S and A is the
unique matrix with this property.
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Proof. Write A = [cij] where [L(vj)]T =

 c1j...
cmj

, or equivalently, L(vj) =
∑m

i=1 cijwi.

Let [v]S =

a1
...
an

 and [w]T =

 b1...
bm

. This means v =
∑n

j=1 ajvj, so

L(v) =
n∑
j=1

ajL(vj) =
n∑
j=1

aj

m∑
i=1

cijwi =
m∑
i=1

(
n∑
j=1

ajcij

)
wi,

which must equal w =
∑m

i=1 biwi. Setting coefficients equal, we obtain bi =
∑n

j=1 cijaj
for each i = 1, 2, . . . ,m. In matrix form, this says b1...

bm

 = [cij]

a1
...
an

 ,
or [w]T = A[v]S, as desired.

To see that A is unique, take v = vk, so that we require [v]S = [vk]S = ek, the

standard basis column vector with a 1 in the kth row, and A[v]S =

 c1k...
cmk

, the kth

column of A, which is unique since L(vk) has a unique coordinate vector with respect
to the basis T . �

In the context of the previous theorem, Exercise 6(b) on page 55 was in essence
asking for the matrix of the identity linear transformation on a certain 3 dimensional
vector space of functions with respect to different bases for the domain and range.
This is often called a change of basis matrix or a transition matrix since it carries one
basis to another. In that exercise, the basis for the domain was {1, cosx, sinx} and
the basis for the range was {1, eix, e−ix} so the matrix P has as its second column,

the coordinate vector of cosx = 0 · 1 + 1
2
eix + 1

2
e−ix, namely

 0
1/2
1/2

.

Theorem 3.14 (§3.5, Theorem 15). Let V be a vector space of dimension n, with
basis {x1, . . . xn}. Then V ∗ has a basis {f1, . . . fn} with the property that fj(xi) = δij.
This is called the dual basis to {x1, . . . xn}. In particular, dimV ∗ = n.

Corollary 3.15. If dimV = n, then dimV ∗∗ = n also, and so V is isomorphic to
V ∗∗. In fact, there is a canonical isomorphism v 7→ Lv where Lv(f) = f(v) for any
v ∈ V, f ∈ V ∗.
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Proposition 3.16. Let V be a vector space and S ⊆ V .

(1) S◦ is a subspace of V ∗.
(2) If dimV = n and U is a subspace of dimension m, then dimU◦ = n − m.

Furthermore, U◦◦ = U∗∗ is canonically isomorphic to U via the double dual
isomorphism.

Proposition 3.17. Assume an arbitrary vector space V = U ⊕ W . Then V ∗ =
U◦ ⊕W ◦, U∗ ∼= W ◦ and W ∗ ∼= U◦.

Inner Products (See Curtis, Section 32.)
For this section, our field F can only be the real numbers R or the complex numbers

C. We work mainly with two types of examples. The standard inner product on F n

is defined by

(3.1) (v|w) =
n∑
i=1

aibi, where v = (a1, . . . , an), w = (b1, . . . , bn).

Our other main example is in working with spaces of integrable functions. For ex-
ample, if V denotes the vector space of all polynomials with complex coefficients (or
all continuous complex-valued functions on [0,1]), we can define an inner product by

(f |g) =

∫ 1

0

f(t)g(t) dt .

In either case, the norm of a vector v is defined as ‖v‖ =
√

(v|v) and is a REAL
number.

Proposition 3.18. Some useful formulas. Let x, y, z be in an inner product space
V , a ∈ F .

(1) (x|ay) = ā(x|y).
(2) (x|y + z) = (x|y) + (x|z).
(3) (x|y) = Re(x|y) + iRe(x|iy),where Re denotes real part.

Theorem 3.19. In any inner product space,

‖x± y‖2 = ‖x‖2 ± 2Re(x|y) + ‖y‖2

For a real inner product space, this gives the law of cosines

‖x− y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ

Corollary 3.20. For a Euclidean space, (x|y) = 1
4
(‖x+ y‖2 − ‖x− y‖2).

Corollary 3.21. For a unitary space,
(x|y) = 1

4
(‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2).

Corollary 3.22 (Parallelogram Law). ‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.



MATH 411 LINEAR ALGEBRA 7

Theorem 3.23. On a finite dimensional inner product space V , each linear func-
tional arises as the inner product with a fixed vector in V . That is, given f ∈ V ∗,
there exists u0 ∈ V such that f(v) = (v|u0) for all v ∈ V .

Example 3.24. This theorem fails for infinite dimensional spaces. As an example
take the space V of all infinite tuples (a1, a2, a3, . . . ) in which all but finitely many ai
are zero. This is clearly isomorphic to the space of polynomials, but we are not yet
ready to describe an appropriate basis for polynomials (something that is a major
topic in Math 407–408). Instead we extend the usual ideas from F n to V : we have a
basis {ei}∞i=1, where ei is the tuple with 1 in the i-th place and zeros elsewhere. And
for an inner product we use equation (3.1) as an infinite sum since only finitely many
terms can be nonzero. Thus (ei|ej) = δij. Now let f : V → F be defined by taking
every ei to 1. Assume that f(v) = (v|y) for all v ∈ V . Write y =

∑
aiei, ai ∈ F .

Then 1 = f(ej) = (ej|
∑
aiei) =

∑
ai(ej|ei) = aj, so aj = 1 for all j. But the infinite

tuple of all 1’s is not in V , so we have a contradiction.

Theorem 3.25. For any inner product space,

(1) ‖av‖ = |a|‖v‖.
(2) |(x|y)| ≤ ‖x‖‖y‖ (Cauchy-Schwarz inequality)
(3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

Definition 3.26. A metric on a vector space V is a mapping d : V × V → R such
that d(x, y) = d(y, x), d(x, y) ≥ 0 and equals 0 iff x = y, and d(x, z) ≤ d(x, y) +
d(y, z). Note that d(x, y) = ‖x − y‖ defines a metric with the special property that
d(x + z, y + z) = d(x, y); that is, translation of two vectors preserves the distance
between them. [If V is complete in this metric, we say it is a Hilbert space.]

If (x|y) = 0, we write x ⊥ y and say x is orthogonal to y. Note that x ⊥ y ⇐⇒
y ⊥ x, 0 ⊥ x for all x, and x ⊥ x ⇐⇒ x = 0.

Proposition 3.27. If x ⊥ T , then x ⊥ S(T ) for any subset T ⊆ V .

Theorem 3.28 (Gram-Schmidt). Every finite dimensional inner product space has
an orthonormal basis.

Proposition 3.29. If V is an inner product space and W is a finite dimensional
subspace, then V = W ⊕W⊥ and W = W⊥⊥.

Back to general vector spaces – no inner product, any field

The book writes L(V,W ) for the set of all linear transformations from a vector space
V to a vector space W over the same field F . We have already noted that this is a
vector space. Section 3.2 of the book discusses the algebra of linear transformations
without telling you what an algebra is. With L(V, V ) as an example, we make the
definition:
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Definition 3.30. An algebra A over a field F is a vector space over F that has a
multiplication operation [composition for L(V, V )] that satisfies

(1) the multiplication is associative and distributes over addition (making A a
ring).

(2) a(xy) = (ax)y = x(ay) for all a ∈ F , x, y ∈ A.

Example 3.31. Some other examples besides L(V, V ) include C as a vector space
over R and the polynomial ring F [x]. These last two have a commutative multipli-
cation, but the composition in L(V, V ) is not commutative. In fact, you showed for
homework that you may even have TU = 0 but UT 6= 0. Another example is F n×n,
the set of n×n matrices over F since we can add them, multiply them and also have
scalar multiplication.

We have already looked at the connection between linear transformations and
matrices, namely, once you pick bases for the domain and range, you have a unique
matrix which will let you do the computations. The next theorem says that this
correspondence makes L(V, V ) and F n×n isomorphic as algebras (that is, the vector
space isomorphism also preserves the multiplication).

Theorem 3.32. Let U, V,W be finite dimensional vector spaces over a field F . Let
{ui}, {vj} and {wk} be bases for these spaces, respectively. For any linear transfor-
mation T between two of these spaces, we write matT for the matrix of T with respect
to the appropriate bases.

(1) If S, T ∈ L(V,W ), then mat(S + T ) = matS + matT .
(2) If S ∈ L(V,W ) and a ∈ F , then mat(aS) = amatS.
(3) If S ∈ L(U, V ), T ∈ L(V,W ), then mat(TS) = matT ·matS.

Proposition 3.33. For a finite dimensional vector space V and T ∈ L(V, V ), there
exists q > 0 such that V = T q(V )⊕ kerT q.

We say that T is nilpotent on the subspace kerT q. This just means that some
power of T is zero. Since no nonzero element of T q(V ) is in the kernel of T , the linear
transformation T is 1–1 on T q(V ).

Lets take a closer look at the ideas of 1–1 and onto. We have seen that a linear
transformation on a finite dimensional vector space is one-to-one iff it is onto iff it
has an inverse. We have also seen examples on homework of linear transformations
with an inverse on one side but not the other (such as differentiation of polynomials).
Let T ∈ L(V,W ). We say T is left invertible if there exists S ∈ L(W,V ) such that
ST = IV , the identity on V . We say T is right invertible if there exists R ∈ L(W,V )
such that TR = IW , the identity on W . We only say that T is invertible if it has
both a left and a right inverse, and then the inverses are equal and denoted by T−1.

Proposition 3.34. If T is left invertible, then T is one-to-one. If T is right invert-
ible, then T is onto.
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Change of basis matrix

We have seen examples of how this works, to change the basis with respect to
which the matrix of a linear transformation is computed. We take a closer look. For
now, assume that T ∈ L(V, V ), so we are working only with one vector space. Let
{xi} and {yi} be two bases and let A and B be the matrices with respect to these
bases, respectively. Let P = (pij) be the matrix of the identity linear transformation
expressed with respect to {yi} for the domain and {xi} for the image. This means
the i-th column of the matrix is the coordinate vector for yi as linear combination
of the xj basis: yi =

∑
k pkixk. As we have noted before, this allows us to compute

B = P−1AP . We check this a different way; notice that we can also think of P as
the matrix of a linear transformation S with respect to {xi} (for both domain and
range) satisfying S(xi) = yi for each i (because that is what the columns represent
in this basis). Thinking of it this way, A and P are both written with respect to the

same basis {xi}, so AP takes the i-th coordinate vector


0
...
1
...
0

 to T (yi) written with

respect to the basis {xi}. Multiplying by P−1 now converts the coordinate vector of
T (yi) into the a coordinate vector with respect to {yi}, which is what B is supposed
to compute. This can all be written out algebraically as in section 3.4 of the book.

We say two matrices A,B are similar if they are related by B = P−1AP for some
nonsingular matrix P .

Proposition 3.35. Similarity of matrices is an equivalence relation: that is,

• any matrix is similar to itself (reflexivity)
• If A is similar to B, then B is similar to A (symmetry)
• If A is similar to B and B is similar to C, then A is similar to C (transitivity)

What we have seen is that a given linear transformation is associated with an
equivalence class of similar matrices, and they all represent the linear transformation
with respect to different bases.

Transposes

Let T : V → W be a linear transformation. We define the transpose of T to be the
function T t : W ∗ → V ∗ defined as follows: if f ∈ W ∗, set T t(f)(v) = f(T (v)) for any
v ∈ V .

Proposition 3.36. T t is a linear transformation, so is in L(W ∗, V ∗).
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Example 3.37. If T = 0, then T t = 0. If V = W and I is the identity, then I t is
the identity in L(V ∗, V ∗).

Theorem 3.38. Let S, T ∈ L(V,W ), a ∈ F . Then (S + T )t = St + T t and (aT )t =
aT t. Thus the set of all transposes T = {T t | T ∈ L(V,W ) } is a subspace of
L(W ∗, V ∗). If also, W = V , then (ST )t = T tSt, so T is a subalgebra of L(V ∗, V ∗).

Recall that we have canonical injections V → V ∗∗ and W → W ∗∗, which are
isomorphisms when the spaces are finite dimensional. We shall denote these mappings
by NV and NW . As a reminder, NV (v) = Lv where Lv(f) = f(v) for all v ∈ V, f ∈
V ∗. These provide a nice correspondence between T and T tt.

Proposition 3.39. Let T : V → W be a linear transformation. Then T ttNV = NWT
as linear transformations from V to W ∗∗.

Proposition 3.40. Let T : V → W be a linear transformation. Then (imT )◦ =
kerT t.

Theorem 3.41 (Matrix of the transpose). If T ∈ L(V, V ) and V is finite dimen-
sional with basis v1, . . . , vn, then the matrix of T t with respect to the dual basis is the
transpose of the matrix of T with respect to the given basis.

Adjoints: for inner product spaces. See page 283 of textbook.

Theorem 3.42. Let V be a finite dimensional inner product space and let T ∈
L(V, V ). Then there exists a unique linear transformation T ∗ ∈ L(V, V ) such that

(Tv|x) = (v|T ∗x) for all x, v ∈ V.

The linear transformation T ∗ of the previous theorem is called the adjoint of T .

Proposition 3.43. For a finite dimensional inner product space V and S, T ∈
L(V, V ),

(1) (T ∗x|v) = (x, Tv) for all x, v ∈ V ;
(2) T = T ∗∗;
(3) (S + T )∗ = S∗ + T ∗;
(4) (ST )∗ = T ∗S∗;
(5) (aT )∗ = āT ∗ for a ∈ F .

Proposition 3.44. With respect to an orthonormal basis for V , the matrix of T ∗ is
the conjugate transpose of the matrix of T .

Chapter 9 of the book does much more with inner product spaces and special classes
of linear transformations. We need to move on to other topics (like determinants),
but here are a few of the main ideas:
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A Unitary linear transformation (in the complex case) or orthogonal linear trans-
formation (in the real case) is one that satisfies T ∗T = I. In the real case this
means the rows of the matrix of T are orthonormal. The importance of such linear
transformations is that they preserve length, so for example, rotations and reflec-
tions are examples. On R2, an orthogonal linear transformation is either a rotation
or a reflection. A major theorem is that any distance preserving function on Rn is a
composition of an orthogonal linear transformation and a translation.

A self-adjoint linear transformation is one satisfying T = T ∗. These are also called
symmetric if F = R or Hermitian if F = C. The corresponding matrix is symmetric
or Hermitian as well. Such matrices are used to generalize the idea of inner product
to bilinear or Hermitian forms (Chapter 8). If S is an invertible linear transformation,
T = S∗S is positive in the sense that (Tx|x) > 0 for any x 6= 0. This gives rise to
a new inner product [x|y] = (Tx|y). On a unitary space, all inner products arise in
this way.

A normal linear transformation is one satisfying T ∗T = TT ∗. Examples are self-
adjoint and unitary linear transformations. These linear transformations have special
properties for their eigenvalues, something we still need to discuss.

Determinants

We need a preliminary result from the Permutation notes on the class web page:

Theorem 3.45. Let Sn be the set of all permutations on n elements. There ex-
ists a unique nontrivial function sgn: Sn → {±1} with the property that sgn(στ) =
sgn(σ) sgn(τ) for all σ, τ ∈ Sn. Furthermore, sgn(τ) = −1 iff τ can be written as a
product of an odd number of transpositions.

There are numerous ways in which a determinant can be defined. They are all
useful, so we need to show they are all equivalent. Let A = (aij) be an n× n matrix.

(1) We will show that there is a unique alternating multilinear form defined on
the columns of A with the property that its value on the identity matrix is 1.

(2) We will see that such a function has the formula

detA =
∑
σ∈Sn

sgn(σ)aσ(1)1aσ(2)2 · · · aσ(n)n

(3) Computationally, row operations can be used to make a diagonal matrix with
the same determinant, and then the determinant is the product of the elements
on the main diagonal.

(4) Expansion by minors, along any row or column, gives another way to compute
a determinant: detA =

∑n
i=1 aij(−1)i+j detA(i|j) is the expansion along the

j-th column.
(5) The classical adjoint of A, adjA, yields another way to compute determinants

via the formula (adjA) ·A = (detA) · I. The classical adjoint is the transpose



12 MATH 411 LINEAR ALGEBRA

of the matrix of cofactors. This also gives a formula for the inverse of a
matrix: A−1 = 1

detA
adjA. This is not computationally efficient for matrices

with numeric entries, but can be very useful if the entries are symbolic since
row operations create messy denominators.

Lagrange interpolation—an application of linear algebra to polynomial approx-
imation

Problem 3.46. Given distinct numbers α1, α2, . . . , αn ∈ F , and a set of arbitrary
numbers c1, . . . , cn ∈ F , find p(x) ∈ F [x] of degree at most n− 1 such that

p(αi) = ci, (i = 1, . . . , n)

Theorem 3.47. Define

πi(x) =

∏
j 6=i(x− αj)∏
j 6=i(αi − αj)

Then

(1) πi(αj) = δij, for 1 ≤ i, j ≤ n.
(2) The set B = {π1, . . . , πn} forms a basis for Pn = { p(x) ∈ F [x] | deg p(x) ≤

n− 1 }.
(3) The polynomial p(x) =

∑n
i=1 ciπi(x) satisfies the Lagrange Interpolation prob-

lem 3.46.
(4) The change of basis transformation from the standard basis to the basis B is

given by 
1 α1 . . . αn−1

1

1 α2 . . . αn−1
2

...
...

...
...

1 αn . . . αn−1
n


The matrix above is called a Vandermonde matrix. It is clearly nonsingular since

it transforms a basis. In fact, this matrix form is rather common and has a nice
formula for its determinant.

Theorem 3.48. For any α1, α2, . . . , αn ∈ F , the Vandermonde determinant∣∣∣∣∣∣∣∣
1 α1 . . . αn−1

1

1 α2 . . . αn−1
2

...
...

...
...

1 αn . . . αn−1
n

∣∣∣∣∣∣∣∣ =
∏
j>i

(αj − αi).

Canonical forms of matrices Our goal in this part is to begin with a linear
transformation and find a special basis in which the matrix has a particularly nice
form. The most common of these are the rational canonical form and the Jordan
canonical form. The latter one is as close as possible to being a diagonal matrix, so
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one thing we will discover is what property T must have for it to have an associated
diagonal matrix.

We shall need to break V up into a direct sum. Recall that we have already seen
that V = W1 ⊕W2 iff W1 ∩W2 = {0} and V = W1 +W2 (that is, the two subspaces
generate V ). For larger direct sums, we need a bit more.

Theorem 3.49. Let W1, . . . ,Wn be subspaces of V and let V = W1 + · · · + Wn =
{
∑
wi | wi ∈ Wi }. The following are equivalent:

(1) (Independence)
∑
wi = 0, with wi ∈ Wi implies each wi = 0.

(2) For each i, Wi ∩ (
∑

j 6=iWj) = {0}.
(3) A union of bases for the subspaces Wi forms a basis of V .

When these conditions hold, we say that V is the direct sum of the subspaces Wi

and write V = W1 ⊕W2 ⊕ · · · ⊕Wn.

Corollary 3.50. If V = W1 ⊕W2 ⊕ · · · ⊕Wn, then dimV =
∑

(dimWi).

Definition 3.51. If T ∈ L(V, V ) and M is a subspace of V , we say that M is
invariant under T if T (M) ⊆M .

Proposition 3.52. If M is invariant under T , then there exists a basis of V in

which the matrix of T has the form

[
A B
0 C

]
. If the complement N of M in V (so

V = M ⊕ N) is also invariant, then B = 0 in the form above and we have a block
diagonal matrix.

Corollary 3.53. If V = W1 ⊕ · · · ⊕Wn and each Wi is invariant under T , we can

write the matrix of T as

A1 0
. . .

0 An

, where Ai is the matrix of T restricted to a

basis for Wi.

Definition 3.54. If V = M ⊕ N , then the function E defined as E(x + y) = x for
x ∈M, y ∈ N , is call the projection on M along N .

Check that E is a linear transformation.

Proposition 3.55. A linear transformation E ∈ L(V, V ) is a projection iff E2 = E.

Corollary 3.56. If E is a projection, then V = imE⊕kerE. With respect to a basis
{x1, . . . , xn} where x1, . . . , xr forms a basis for imE and xr+1, . . . , xn forms a basis

for kerE, the matrix of E has the form

[
Ir 0
0 0

]
.

Proposition 3.57. E is a projection iff I − E is a projection.
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Theorem 3.58. If V = W1 ⊕ · · · ⊕Wn, then there exist Ei ∈ L(V, V ), i = 1, . . . , n,
such that E2

i = Ei, I =
∑
Ei and EiEj = 0 if i 6= j. Conversely, if EiEj = δij and

I =
∑
Ei, then V = imE1 ⊕ · · · ⊕ imEn.

Definition 3.59. An element λ ∈ F is an eigenvalue or characteristic value for a lin-
ear transformation T ∈ L(V, V ) provided that T − λI is not invertible. Equivalently,
there exists v 6= 0 in V such that Tv = λv. The vector v is called an eigenvector
or characteristic vector of T associated with λ. The subspace {v ∈ V | Tv = λv }
is called the eigenspace or characteristic space associated with λ. We make similar
definitions for a matrix A.

Proposition 3.60. λ is an eigenvalue of A iff det(A− λI) = 0.

The polynomial fA(x) = det(xI − A) in the variable x is called the characteristic
polynomial of A.

Proposition 3.61. Similar matrices have the same characteristic polynomial.

Definition 3.62. Let T ∈ L(V, V ) for some finite dimensional vector space V . The
characteristic polynomial fT (x) of T is the characteristic polynomial of the matrix of
T with respect to any basis.

Proposition 3.63. If λ1, . . . , λr ∈ F are the distinct eigenvalues of a linear trans-
formation T ∈ L(V, V ) with associated nonzero eigenvectors x1, . . . , xr, then the set
{x1, . . . , xr} is linearly independent. If r = n = dimV , then the matrix of T with
respect to this basis is diagonal with the eigenvalues on the diagonal.

Lemma 3.64. Let C = B(λ)(A−λI) where C has constant entries while the entries
of B(λ) and (A− λI) are polynomials in λ. Then C = 0.

Theorem 3.65 (Cayley-Hamilton Theorem). Any matrix satisfies its characteristic
polynomial. That is, fA(A) = 0 for any n× n matrix A.

It follows that any linear transformation satisfies its characteristic polynomial. We
saw at the beginning of the semester that any two polynomials f(x), g(x) can have
their greatest common divisor written in the form d(x) = u(x)f(x) + v(x)g(x). If
f(T ) = 0 = g(T ), then d(T ) = 0. It follows that there is a polynomial of smallest
possible degree m(x) that T satisfies. Such polynomials will differ only by a constant
multiple, so we may assume that m(x) is monic. This unique monic polynomial is
called the minimal polynomial of T . Using the division algorithm, we see that m(x)
divides fT (x). Thus the roots of m(x) are all roots of fT (x). The converse is also
true!

Proposition 3.66. If λ is an eigenvalue of T , then m(λ) = 0.

Theorem 3.67. Let m(x) ∈ F [x] be the minimal polynomial of T ∈ L(V, V ). Factor
m(x) = p1(x)e1 · · · ps(x)es where each pi(x) is irreducible over the field F . Let Ti =
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pi(T )ei, again a linear transformation from V to V . Then V = ker(T1)⊕· · ·⊕ker(Ts)
is an invariant direct sum decomposition of V .

Theorem 3.68. T is diagonalizable (i.e., there exists a basis in which the matrix of
T is diagonal) if and only if m(x) =

∏s
i=1(x − λi), where the λi are all distinct and

in F .

Example 3.69. Let F = R. The matrix

[
1 0
0 1

]
has minimal polynomial x−1 and is

clearly diagonal. The matrix

[
1 1
0 1

]
has minimal polynomial (x−1)2 so is not similar

to a diagonal matrix. The matrix

[
0 1
−1 0

]
has characteristic polynomial x2 + 1. The

roots are distinct in C, so it must also be the minimal polynomial; since the roots are

not in R, it is not similar to a diagonal real matrix, but is similar to

[
i 0
0 −i

]
.

Definition 3.70. A linear transformation T ∈ L(V, V ) is nilpotent of index q if T q

is the zero linear transformation, but T q−1 6= 0.

For example, on the space of polynomials of degree at most n, the derivative is
nilpotent of index n+ 1.

Lemma 3.71. If T ∈ L(V, V ) is nilpotent, then there exists a basis in which the
matrix A = (aij) of T is strictly upper triangular (aij = 0 if i ≥ j.)

Theorem 3.72. If the minimal polynomial of a linear transformation T is m(x) =∏s
1(x−λi)ei (so all eigenvalues are in F ), then there exists a basis in which the matrix

of T consists of s blocks down the diagonal, the ith block being an upper triangular
ei × ei matrix with λi in each diagonal position.

Theorem 3.73. If T is nilpotent of index q, then V can be written in the form
V = S(v, Tv, T 2v, . . . , T q−1v) ⊕ K, where K is an invariant subspace and v is any
vector not in kerT q−1.

Corollary 3.74. If T is nilpotent of index q on an n-dimensional vector space V ,
then there exists a basis of the form

{v1, T v1, . . . , T
q−1v1; v2, T v2, . . . , T

q2−1v2; . . . ; vs, T vs, . . . , T
qs−1vs},

where q ≥ q2 ≥ · · · ≥ qs and n = q + q2 + · · ·+ qs.

With respect to the basis given in the Corollary, the matrix of T consists of s
blocks of size qi×qi each of which is entirely zero except for 1’s down the subdiagonal
(see Lemma 25.10 of the text). It is more common to reverse the order of the basis
so that the 1’s are on the superdiagonal. Note that the characteristic polynomial of
T is xn and the minimal polynomial is xq, which can be seen either from the matrix
or from the definition of nilpotent of index q.
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Proposition 3.75. If T is nilpotent of index q on V and V = V1 ⊕ · · · ⊕ Vr =
U1 ⊕ · · · ⊕ Us, both in decreasing order of dimension and with bases of the form
v, Tv, . . . , T kv, then r = s and dimUi = dimVi for each i.

Theorem 3.76 (Jordan Canonical Form). A matrix A with all eigenvalues in F is
similar to a unique (up to order of the blocks) matrix in Jordan form; the Jordan
form consists of a block matrix where each block has an eigenvalue repeated down the
diagonal, 1’s separated by single 0’s on the subdiagonal (or superdiagonal) and zeros
elsewhere.

Example 3.77. (1) Let

A =

−1 2 2
2 2 2
−3 −6 −6


Then det(xI −A) = x(x+ 2)(x+ 3) is the characteristic polynomial and also
the minimal polynomial since the roots are distinct. The Jordan Canonical
Form of the matrix is 0 0 0

0 −2 0
0 0 −3


(2) Let

A =

 1 1 −1
−1 3 −1
−1 2 0


Then det(xI − A) = (x − 1)2(x − 2) is the characteristic polynomial, so the
minimal polynomial is either (x− 1)(x− 2) or (x− 1)2(x− 2). We can check
that (A − I)(A − 2I) 6= 0, so the latter polynomial works. Thus the Jordan
Canonical Form of the matrix is1 1 0

0 1 0
0 0 2


(3) Let

A =


1 0 −1 1 0
−4 1 −3 2 1
−2 −1 0 1 1
−3 −1 −3 4 1
−8 −2 −7 5 4


Then det(xI − A) = (x − 2)5 is the characteristic polynomial, so A − 2I is
nilpotent. Since (A − 2I)2 6= 0 and (A − 2I)3 = 0, the index q = 3 and the
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minimal polynomial is (x− 2)3. We now almost know the Jordan Canonical
Form, namely

B =


2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 2 ?
0 0 0 0 2


We now follow all those theorems on nilpotent linear transformations. Let T
be the linear transformation with matrix A − 2I. Choose some v such that
(A − 2I)2v 6= 0, say v = (0, 0, 0, 1, 0)t. Our first three basis elements will be
v, Tv, T 2v or (0, 0, 0, 1, 0)t, (1, 2, 1, 2, 5)t, (0, 0, 1, 1, 1)t. For the complementary
subspace K, we need a vector v4 such that v4 /∈ S(v, Tv, T 2v) and Tv4 6= 0;
v4 = (−1, 0, 1, 0, 0)t works and then v5 = Tv4 = (0, 1, 0, 0, 1)t completes the
basis. The index q = 2 for T on the subspace K and the question mark in
B is a 1. If there were no such v4, that is, if q = 1, then the question mark
would be a 0. The matrix for T is just B without the 2’s on the diagonal,
that is, B − 2I.

Rational Canonical Form. We next look at a canonical form which does not
require that the eigenvalues be in the field F . Chapter 7 includes a lot of abstract
algebra for polynomial rings which is normally done in a first year graduate algebra
class [Fundamental Theorem of finitely generated torsion modules over a principal
ideal domain]. For that reason, I will present the main theorem without proof; we
know enough to understand the statement of the theorem.

Again, V is a finite dimensional vector space and T ∈ L(V, V ).

Theorem 3.78. Let the minimal polynomial of T be mT (x) =
∑r

0 cix
i. Assume that

there exists a vector v ∈ V such that V is spanned by the vectors T kv, k = 0, 1, . . . .
Then {v, Tv, . . . , T r−1v} is a basis for V in which the matrix of T becomes

C(mT (x)) =


0 0 . . . 0 −c0
1 0 . . . 0 −c1
...

...
...

...
...

0 0 . . . 1 −cr−1

 ,
called the companion matrix of mT .

Theorem 3.79. Assume the minimal polynomial of T is mT (x) = p(x)e, where
p(x) is a monic irreducible polynomial over F . Then the matrix of T with respect
to an appropriate basis consists of blocks down the diagonal of the form C(p(x)ei),
i = 1, . . . , r, where e = e1 ≥ e2 ≥ · · · ≥ er.

Theorem 3.80 (Rational Canonical Form). Factor the minimal polynomial mT (x) =∏s
1 pi(x)ei into powers of distinct monic irreducible polynomials. Then there exists a
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basis of V such that the matrix of T has blocks down the diagonal in the form of the
previous theorem.

Example 3.81. Let

A =

 1 3 3
3 1 3
−3 −3 −5


Then det(xI −A) = (x− 1)(x+ 2)2 is the characteristic polynomial. One can check
that A2 + A− 2I = 0, so that mA(x) = (x− 1)(x + 2). We have e1 = e2 = 1 so the
Rational Canonical form of A isC(x+ 2) 0 0

0 C(x+ 2) 0
0 0 C(x+ 1)

 =

−2 0 0
0 −2 0
0 0 1


As another example, look at

Example 3.82. Let

A =

[
0 1
−1 0

]
Then det(xI − A) = x2 + 1 is the characteristic polynomial and the eigenvalues are
not real. The Rational Canonical form (over R) of A is

C(x2 + 1) =

[
0 −1
1 0

]


