ADJOINTS AND TRANSPOSES

This note is to clarify use of notation and terminology which differs between books.
Table 1. A denotes a matrix, T a linear transformation

term	notes	411 book	311 book
(hermitian) adjoint	A^{*}, T^{*}	$\overline{{ }^{\bar{t}} A}, T^{\prime}$	
transpose	A^{t}, T^{t}	${ }^{t} A, T^{*}$	A^{t}
(classical) adjoint, adjugate		A^{*}	adj A

In spite of name and notation similarities, the main ideas are very different. For a linear transformation $T: V \rightarrow V$, the adjoint is a linear transformation on V defined with respect to an inner product, the transpose is a linear transformation on the dual space V^{*} and the classical adjoint of a matrix has the property that $A(\operatorname{adj} A)=(\operatorname{det} A) I$.

