ADJOINTS AND TRANSPOSES

This note is to clarify use of notation and terminology which differs between books.

term	notes	411 book	311 book
(hermitian) adjoint	A^*, T^*	$\overline{{}^{t}A}, T'$	
transpose	A^t, T^t	$^{t}A, T^{*}$	A^t
(classical) adjoint, adjugate		A^*	adj A

TABLE 1. A denotes a matrix, T a linear transformation

In spite of name and notation similarities, the main ideas are very different. For a linear transformation $T: V \to V$, the adjoint is a linear transformation on V defined with respect to an inner product, the transpose is a linear transformation on the dual space V^* and the classical adjoint of a matrix has the property that A(adj A) = (det A)I.