Math 411
Due Wednesday, April 9, 2014

1. Let A be a 2×2 matrix over a field F and suppose that $A^{2}=0$. Show that $\operatorname{det}(c I-A)=c^{2}$. [Do not use advanced theorems about eigenvalues and similar matrices.]
2. An $\mathrm{n} \times \mathrm{n}$ matrix over a field F is skew-symmetric if $A^{t}=-A$. If A is skew-symmetric with complex entries and n is odd, prove that $\operatorname{det} A=0$
3. An $\mathrm{n} \times \mathrm{n}$ matrix over a field F is orthogonal if $A^{t} A=I$. If A is orthogonal, show that $\operatorname{det} A= \pm 1$. Give an example of an orthogonal matrix with determinant -1.
4. Let A be an $\mathrm{n} \times \mathrm{n}$ matrix with block form

$$
\left(\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \\
0 & A_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & A_{k}
\end{array}\right)
$$

where A_{i} is an $r_{i} \times r_{i}$ matrix. Show that $\operatorname{det} A=\left(\operatorname{det} A_{1}\right) \cdots\left(\operatorname{det} A_{k}\right)$.
5. Let A be an $\mathrm{n} \times \mathrm{n}$ matrix over a field F. Prove that there are at most n distinct scalars $c \in F$ such that $\operatorname{det}(c I-A)=0$.

