Math 411
HOMEWORK \#9
Due Wednesday, April 2, 2014

1. Let $V=\mathbb{C}_{2}$ with the standard inner product. Let T be the linear transformation defined by $T\langle 1,0\rangle=\langle 1,-2\rangle, T\langle 0,1\rangle=\langle i,-1\rangle$. Find $T^{*}\left\langle x_{1}, x_{2}\right\rangle$.
2. Let V be a finite dimensional inner product space and $T \in L(V, V)$. Show that the range of T^{*} is the orthogonal complement of the kernel of T.
3. Let V be a finite dimensional inner product space and $T \in L(V, V)$. If T is invertible, show that T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
4. Let V be the vector space of all real-valued differentiable functions f on the interval $[0,1]$ such that $f(0)=f(1)=0$. Define an inner product on V by

$$
(f, g)=\int_{0}^{1} f(t) g(t) d t
$$

Let D be the differentiation operator and compute its adjoint D^{*}.

