Math 411 HOMEWORK #9 Due Wednesday, April 2, 2014

- 1. Let $V = \mathbb{C}_2$ with the standard inner product. Let T be the linear transformation defined by $T\langle 1, 0 \rangle = \langle 1, -2 \rangle$, $T\langle 0, 1 \rangle = \langle i, -1 \rangle$. Find $T^*\langle x_1, x_2 \rangle$.
- **2.** Let V be a finite dimensional inner product space and $T \in L(V, V)$. Show that the range of T^* is the orthogonal complement of the kernel of T.
- **3.** Let V be a finite dimensional inner product space and $T \in L(V, V)$. If T is invertible, show that T^* is invertible and $(T^*)^{-1} = (T^{-1})^*$.
- 4. Let V be the vector space of all real-valued differentiable functions f on the interval [0,1] such that f(0) = f(1) = 0. Define an inner product on V by

$$(f,g) = \int_0^1 f(t)g(t) \, dt.$$

Let D be the differentiation operator and compute its adjoint D^* .