
THE RUNNER’S PARADOX: A MEAN-VALUE THEOREM FOR
INTERVALS

THOMAS C. CRAVEN AND TARA L. SMITH†

The following query was posted to an internet running group: “I recently ran a
local 12 kilometer race and finished in exactly 48 minutes. Can I now brag that I have
run 10 kilometers in 40 minutes (or less)?” Unfortunately for our would-be boastful
running friend, it turns out that this is not the case. Indeed, as we will illustrate in
Example 2, it is not hard to create continuous functions (representing distance the
runner traveled as a function of time) for which every 10-kilometer segment of the
race would have been run in more than 40 minutes (and likewise, functions for which
every 10-kilometer segment would have been run in less than 40 minutes). Without
more information on how the runner paced his race, it is impossible for him to make
this claim.

In general, the question being asked is the following: Let f be a continuous function
defined on some interval of length l, and let s be a fixed length less than l. Does there
exist a subinterval of length s on which the average rate of change of f equals the
average rate of change of f on the entire interval? Thus it is a kind of “mean-value
theorem” for intervals.

Not surprisingly, for sufficiently well-behaved functions such an interval will always
exist. For instance, if our running friend had started out slowly and had steadily
picked up the pace, or had started out fast and had steadily slowed down, thus
staying either always behind, or always ahead, of a runner sticking to a steady 4
minutes per kilometer pace, then he would have run an n-kilometer subinterval of
the race in 4n minutes for every positive real number n ≤ 12, as the following theorem
shows.

Theorem 1. Let f be a continuous function on [a, b]. Assume that the graph of f
does not cross the line through (a, f(a)) and (b, f(b)). Let 0 < s < b − a be fixed.

Then there exists a subinterval [c, d] of [a, b] of length s for which f(d)−f(c)
d−c

= f(b)−f(a)
b−a

;
i.e. such that the average rate of change on the subinterval equals the average rate of
change on the entire interval.
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Proof. As in the usual calculus proof of the mean-value theorem, we may assume that
f(a) = f(b) = 0. We may assume that f(x) ≥ 0 on (a, b), since otherwise one can
replace f(x) by f(−x). We consider the continuous function h(x) = f(x+ s)− f(x)
defined on [a, b − s]. If h(x) is ever zero, we are done. But h(a) = f(a + s) ≥ 0
and h(b− s) = −f(b− s) ≤ 0; if neither of these is zero, then the intermediate-value
theorem gives a point in (a, b− s) at which h is zero. �

Suppose, however, that the runner is a bit more like the proverbial hare, first
bursting ahead of the steady 4-minutes-per-kilometer runner, then lagging behind
him. Under these circumstances it may well happen, depending on s, that for each
interval of length s, he will be running more slowly (or running faster) on that interval
than the average pace for the entire distance, as the following example illustrates.

Example 2. (a) Consider the function f(x) = sin(2πx) on [0, 1]. One sees that for
any s > 1/2, the average rate of change of f on an interval of length s is negative,
while the average rate of change on [0, 1] is 0.
(b) Similarly, consider the function f(x) = − sin(2πx) on [0, 1]. One sees that for

any s > 1/2, the average rate of change of f on an interval of length s is positive,
while the average rate of change on [0, 1] is 0.

The situation of Example 2 can happen for most values of s. It fails to be possible
only when the length of the entire interval is a positive integer multiple of the length
s of the subinterval. Thus the runner could indeed claim that he had run some
six-kilometer stretch of his race in exactly 24 minutes, some three-kilometer stretch
in exactly 12 minutes, and some one-kilometer segment in exactly 4 minutes. This
is shown by the following theorem, which can be found in [1, page 98], and is a
consequence of the universal chord theorem proved by P. Levy [4].

Theorem 3. Fix 0 < s < 1. One can find a continuous function f on [0, 1] such
that the average rate of change of f on every interval of length s is always greater
than the average rate of change of f on [0, 1] if and only if s is not the reciprocal of
an integer.

Proof. Once again we may assume that f(0) = f(1), so that the average rate of
change of f on [0, 1] is 0. If s is the reciprocal of an integer, the claim is easily seen
as the average of f on each subinterval [ks, (k + 1)s] being positive implies that the
average on the entire interval is positive, not zero. On the other hand, if s is not the
reciprocal of an integer, set B = | sin(π/s)| > 0. Define f(x) = Bx− | sin(πx/s)| on
[0, 1]. Then f(0) = 0 and f(1) = B − | sin(π/s)| = 0 and f(x + s) − f(x) = Bs, so
the average rate of change on any interval of length s is B > 0. �

Example 4. Even when s is the reciprocal of an integer, it may happen that the
average rate of change on each subinterval of length s is always greater than or equal
to the average rate of change on the entire interval and is sometimes strictly greater.
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For example, for s = 1/3 and k > 0, one can consider the function

fk(x) =

{
k sin(6πx), 1

6
≤ x ≤ 5

6

0, otherwise.

The average rate of change of fk on the subintervals of length 1/3 ranges from 0 to
3k, although the average rate of change on the entire interval is 0.

We need to know more about the values of s that work when f is an unrestricted
continuous function. It was shown in [1] (see also [2]) that at least half the potential
values of s work. In fact, the proof there shows that for any 0 < s < b − a, there
will exist an interval of length either s or (b− a)− s (possibly both) on which f will
have the desired average rate of change. Example 2 shows that in general one cannot
hope for more than half the values of s to work.

On the other hand, for any given continuous function, there is some interval (0, ε]
such that for any s in this interval, one can always find a subinterval of length s
with the desired average rate of change. Indeed, working with the normalized case
(interval [0, 1], f(0) = f(1) = 0), just let c be a place at which f(c) 6= 0 (assuming f
is not identically zero). Then there exists an interval [c− ε/2, c+ ε/2] on which f is
nonzero. For every s ∈ (0, ε], it is clear that we can find x, y ∈ [c− ε/2, c+ ε/2] such
that f(x)− f(y) = 0 and y − x = s.

To have some control over the size of ε, we must know more about the function f .
For example, if f has exactly n zeros in (0, 1), then one of the intervals between zeros
must have length at least 1/(n+ 1), so Theorem 1 says that ε = 1/(n+ 1) will work.
In fact, we can do somewhat better. We give the precise bounds found by Levit [3]
in the following theorem.

Theorem 5. Assume the continuous function f changes sign exactly n ≥ 0 times on
the interval (0, 1), f(0) = f(1) = 0, and f is not identically zero on any subinterval.

(1) If n is odd, then for any s ∈ (0, 2
n+3

], there exists a subinterval of [0, 1] of
length s on which the average rate of change of f is zero.

(2) If n is even, then for any s ∈ (0, 2
n+2

], there exists a subinterval of [0, 1] of
length s on which the average rate of change of f is zero.

(3) The intervals in (1) and (2) cannot be enlarged.
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