1. Let $R = \mathbb{C}([0, 1])$ be the ring of continuous real-valued functions on the interval $[0, 1]$, with the usual definitions of sum and product of functions from calculus. Show that $f \in R$ is a zero divisor if and only if f is not identically zero and $\{ x \mid f(x) = 0 \}$ contains an open interval. What are the idempotents of this ring? What are the nilpotents? What are the units?

2. Steinberger, p. 207, #5.

4. Steinberger, p. 211, #15. [S^1 is the unit circle, as defined in #6. $SO(2)$, the special orthogonal group, is the group of 2×2 orthogonal real matrices of determinant 1.]

5. Let R be an integral domain. We say R is a Euclidean ring if there is a function $\alpha \mapsto \| \alpha \|$ from the nonzero elements of R to the nonnegative integers satisfying
 (1) if α is divisible by β, then $\| \alpha \| \geq \| \beta \|$;
 (2) for all $\alpha, \beta \in R, \beta \neq 0$, there exist $\gamma, \delta \in R$ with $\alpha = \gamma \beta + \delta$ and either $\delta = 0$ or $\| \delta \| < \| \beta \|$.

 a. Prove that every Euclidean ring is a PID.
 b. Let α, β be nonzero elements of a Euclidean ring. Define a sequence
 \[
 \begin{align*}
 \alpha &= a_0 \beta + r_1 \\
 \beta &= a_1 r_1 + r_2 \\
 r_1 &= a_2 r_2 + r_3 \\
 & \vdots \\
 r_{n-1} &= a_n r_n
 \end{align*}
 \]
 by applying “division with remainder” until there is no remainder. Prove that you do always stop at some r_n, and that r_n is the greatest common divisor of α and β.
 c. Find the greatest common divisor of 19775 and 18193.

6. a. Let a, b be two elements of a Euclidean domain R. Show how, from the Euclidean algorithm, you can find $\lambda, \mu \in R$ with $\lambda a + \mu b = \gcd(a, b)$.
 b. Demonstrate this by finding integers λ, μ such that
 \[235\lambda + 126\mu = 1.\]