QUIZ 1 Solutions

(8) 1. Give the definitions:
 a. A sequence \(\{a_n\}_{n=1}^\infty \) is convergent iff …
 there is a real number \(A \) such that for every \(\varepsilon > 0 \) there exists an integer \(N \) such that if \(n \geq N \), then \(|a_n - A| < \varepsilon \).
 b. Let \(S \) be a set of real numbers. A real number \(A \) is an accumulation point of \(S \) iff …
 (For this part only: full credit for any statement equivalent to the definition.)
 every neighborhood of \(A \) contains infinitely many points of \(S \).
 c. State the Least Upper Bound Property of \(\mathbb{R} \).
 Every non-empty subset of \(\mathbb{R} \) that is bounded from above has a least upper bound.
 d. State the Bolzano-Weierstrass Theorem, which concerns sets of real numbers that have accumulation points.
 Every bounded and infinite set of real numbers has at least one accumulation point.

(6) 2. Suppose \(E \subset \mathbb{R} \) is non-empty and that \(E \cap [0, 1] = \emptyset \).
 a. Is it possible that \(\text{sup } E = 0 \)? If “yes”, give an example of such a set. If “no”, explain why not.
 Yes. An example is the set \(E = (-1, 0) \).
 b. Is it possible that \(\text{sup } E = 1 \)? If “yes”, give an example of such a set. If “no”, explain why not.
 No. If \(\text{sup } E = 1 \), then from hw #0.44 \((1 - \varepsilon, 1] \cap E \neq \emptyset \) for all \(\varepsilon > 0 \). But \((0, 1] \cap E = [0, 1] \cap E = \emptyset \), from the hypothesis, so taking \(\varepsilon = 1 \) in hw #0.44 gives a contradiction.

(4) 3. Give an example of a set \(S \) of real numbers that has exactly two accumulation points, 0 and 1.
 An example is
 \[S = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\} \cup \left\{ 1 + \frac{1}{n} : n \in \mathbb{N} \right\}. \]
 Compare to hw #1.22, and examples from your class notes.

(7) 4. Prove that every convergent sequence is a Cauchy sequence. (This is a theorem in the text. Don’t just refer to another theorem coming after this in the book; give a proof based
on the definitions, using $\varepsilon > 0$.)

This is Theorem 1.3 in the text. The proof is a “standard $\varepsilon/2$ argument”, which you can find in the text.