Chapter 4

- What is a random variable?
 - Formal definition of a random variable.
 - Functions of random variables.
 - Distribution and Expectation
Example 1.

- Let \(\Omega \) be a human population containing \(n \) individuals.

\[
\Omega = \{ \omega_1, \omega_2, \ldots, \omega_n \} \quad (4.1.1)
\]
Example 1.

- Let Ω be a human population containing n individuals.

 $\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\}$ \hspace{1cm} (4.1.1)

- Suppose we’re interested in their age distribution. Let

 $A(\omega) =$ the age of individual ω.
Example 1.

- Let Ω be a human population containing n individuals.

 \[\Omega = \{ \omega_1, \omega_2, \ldots, \omega_n \} \quad (4.1.1) \]

- Suppose we’re interested in their age distribution. Let

 \[A(\omega) = \text{the age of individual } \omega. \]

- Thus to each ω is associated a number $A(\omega)$, the number of years person ω has lived.
Example 1.

- Let Ω be a human population containing n individuals.

\[\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\} \quad (4.1.1) \]

- Suppose we’re interested in their age distribution. Let

\[A(\omega) = \text{the age of individual } \omega. \]

- Thus to each ω is associated a number $A(\omega)$, the number of years person ω has lived.

- The mapping

\[\omega \mapsto A(\omega) \]

is a function from domain Ω to range $\mathbb{N} = \{1, 2, \ldots\}$.
Example 1.

- Let Ω be a human population containing n individuals.
 \[\Omega = \{\omega_1, \omega_2, \ldots, \omega_n\} \quad (4.1.1) \]

- Suppose we’re interested in their age distribution. Let
 \[A(\omega) = \text{the age of individual } \omega. \]

- Thus to each ω is associated a number $A(\omega)$, the number of years person ω has lived.

- The mapping
 \[\omega \mapsto A(\omega) \]

 is a function from domain Ω to range $\mathbb{N} = \{1, 2, \ldots\}$.

- integer-valued vs. real-valued functions.
Similarly, we may denote the height, weight, and income by the functions
\[\omega \mapsto H(\omega), \]
\[\omega \mapsto W(\omega), \]
\[\omega \mapsto I(\omega). \]
For some medical purposes, a linear combination of height and weight may be a useful measure:
\[\omega \mapsto \lambda H(\omega) + \mu W(\omega), \]
where \(\lambda \) and \(\mu \) are two numbers. This is also a function of \(\omega \).
Similarly, if \(\omega \) is a "head of family," the census bureau may consider the function:
\[\omega \mapsto I(\omega) N(\omega), \]
where \(N(\omega) \) is the number of persons in \(\omega \)'s family.
Similarly, we may denote the height, weight, and income by the functions

\[\omega \mapsto H(\omega) \]
\[\omega \mapsto W(\omega) \]
\[\omega \mapsto I(\omega) \]
Similarly, we may denote the height, weight, and income by the functions

\[\omega \mapsto H(\omega) \]
\[\omega \mapsto W(\omega) \]
\[\omega \mapsto I(\omega) \]

For some medical purposes, a linear combination of height and weight may be a useful measure:

\[\omega \mapsto \lambda H(\omega) + \mu W(\omega), \]

where \(\lambda \) and \(\mu \) are two numbers. This is also a function of \(\omega \).
Example 1. (continued)

- Similarly, we may denote the height, weight, and income by the functions
 \[
 \omega \mapsto H(\omega), \\
 \omega \mapsto W(\omega), \\
 \omega \mapsto I(\omega)
 \]

- For some medical purposes, a linear combination of height and weight may be a useful measure:
 \[
 \omega \mapsto \lambda H(\omega) + \mu W(\omega),
 \]

 where \(\lambda \) and \(\mu \) are two numbers. This is also a function of \(\omega \).

- Similarly, if \(\omega \) is a “head of family,” the census bureau may consider the function:
 \[
 \omega \mapsto \frac{I(\omega)}{N(\omega)}
 \]

 where \(N(\omega) \) is the number of persons in \(\omega \)’s family.
Persons between ages 20 and 40:

\{ \omega \in \Omega \mid 20 \leq A(\omega) \leq 40 \}
Persons between ages 20 and 40:

\[\{ \omega \in \Omega \mid 20 \leq A(\omega) \leq 40 \} \]

or simply \(\{ 20 \leq A \leq 40 \} \).

Describe the set of all persons with height between 65 and 75 (inches) and weight between 120 and 180 (pounds).
Persons between ages 20 and 40:

\[\{ \omega \in \Omega \mid 20 \leq A(\omega) \leq 40 \} \]

or simply \(\{ 20 \leq A \leq 40 \} \).

Describe the set of all persons with

- height between 65 and 75 (inches) \textit{and}
- weight between 120 and 180 (pounds).
More examples of random variables

- **Example 2.**
 \[\Omega = \text{molecules in a container}. \]
More examples of random variables

- **Example 2.**
 \[\Omega = \text{molecules in a container.} \]

- **Example 3.**
 \[\Omega = \text{a collection of } n\text{-dimensional vectors.} \]
Chapter 4

- What is a random variable?
- Formal definition of a random variable.
- Functions of random variables.
- Distribution and Expectation
Definition (Random Variable)

A numerically valued function $X(\omega)$ with domain Ω

$$\omega \mapsto X(\omega)$$

is called a random variable (on Ω).
Definition (Random Variable)

A numerically valued function $X(\omega)$ with domain Ω

\[\omega \mapsto X(\omega) \]

is called a random variable (on Ω).

Comments on the term “random variable” vs. alternatives:

- “random quantity”
- “stochastic variable”
The adjective "random" reminds us that X is not just an ordinary function. It is a function of a sample space Ω. Thus, X describes some feature of a random event or chance phenomenon.

Important point: What is random about $X(\omega)$ is the sample point ω, which is picked at random from the sample space Ω. Once ω is picked, $X(\omega)$ is determined and there is nothing vague, indeterminate, or chancy about it.

For instance, after a particular apple ω is picked from the bushel Ω, its weight $W(\omega)$ can be measured and may be considered as a known fixed quantity (not random).

Standard notation for random variables: $X(\omega) = x$.

W. DeMeo (williandomeo@gmail.com)
What’s so random about a random variable?

- The adjective “random” reminds us that X is not just an ordinary function. It is a function of a *sample space*, Ω. Thus, X describes *some feature of* a random event or chance phenomenon.
What’s so random about a random variable?

- The adjective “random” reminds us that \(X \) is not just an ordinary function. It is a function of a \textit{sample space}, \(\Omega \). Thus, \(X \) describes \textit{some feature of} a random event or chance phenomenon.

\[\text{Important point} \]

What is random about \(X(\omega) \) is the sample point \(\omega \), which is picked at random from the sample space \(\Omega \).

\textit{Once} \(\omega \) \textit{is picked}, \(X(\omega) \) \textit{is determined and there is nothing vague, indeterminate, or chancy about it.}
The adjective “random” reminds us that X is not just an ordinary function. It is a function of a *sample space*, Ω. Thus, X describes *some feature of* a random event or chance phenomenon.

Important point

What is random about $X(\omega)$ is the sample point ω, which is picked at random from the sample space Ω. *Once ω is picked, $X(\omega)$ is determined and there is nothing vague, indeterminate, or chancy about it.*

For instance, after a particular apple ω is picked from the bushel Ω, its weight $W(\omega)$ can be measured and may be considered as a known fixed quantity (not random).
What’s so random about a random variable?

- The adjective “random” reminds us that X is not just an ordinary function. It is a function of a sample space, Ω. Thus, X describes some feature of a random event or chance phenomenon.

Important point

What is random about $X(\omega)$ is the sample point ω, which is picked at random from the sample space Ω.

Once ω is picked, $X(\omega)$ is determined and there is nothing vague, indeterminate, or chancy about it.

- For instance, after an particular apple ω is picked from the bushel Ω, its weight $W(\omega)$ can be measured and may be considered as a known fixed quantity (not random).

- Standard notation for random variables: $X(\omega) = x$.
Chapter 4

- What is a random variable?
- Formal definition of a random variable.
- Functions of random variables.
- Distribution and Expectation
Proposition 1
If X and Y are random variables, so are the functions...
Proposition 1
If X and Y are random variables, so are the functions...

Proposition 2
If $\varphi : X \times Y \to \mathbb{R}$ is a function of two variables then...

Example
Let $\varphi(x, y) = \sqrt{x^2 + y^2}$, and suppose $X(\omega)$ and $Y(\omega)$ denote the horizontal and vertical velocities of a gas molecule $\omega \in \Omega$; then $\varphi(X(\omega), Y(\omega)) = \sqrt{X^2(\omega) + Y^2(\omega)}$ denotes the absolute speed of ω.
Functions of random variables

Proposition 1
If X and Y are random variables, so are the functions...

Proposition 2
If $\varphi : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a function of two variables then...

Example
Let $\varphi(x, y) = \sqrt{x^2 + y^2}$, and suppose $X(\omega)$ and $Y(\omega)$ denote the horizontal and vertical velocities of a gas molecule $\omega \in \Omega$; then

$$\varphi(X(\omega), Y(\omega)) = \sqrt{X^2(\omega) + Y^2(\omega)}$$

denotes the absolute speed of ω.
Important points about functions of rv’s

Proposition 1 is a special case of Proposition 2. Proposition 2 handles the case $f(X) = \phi(X,Y)$.

Proposition 2 generalizes to functions $\phi(x_1,...,x_n)$ of n variables:

$\phi: X_1 \times \cdots \times X_n \to \mathbb{R}$

Important Example

The sum of n random variables:

$\phi(X_1(\omega),...,X_n(\omega)) = X_1(\omega) + \cdots + X_n(\omega)$

We will denote this function by $S_n(\omega)$.

W. DeMeo (williamdemeo@gmail.com)
Chapter 4: Random Variables July 1, 2011 12 / 19
Proposition 1 is a special case of Proposition 2.

\[f(X) = \phi(X, Y) \]

Proposition 2 generalizes to functions \(\phi(x_1, \ldots, x_n) \) of \(n \) variables:

\[\phi: X_1 \times \cdots \times X_n \to \mathbb{R} \]

Important Example

The sum of \(n \) random variables:

\[\phi(X_1(\omega), \ldots, X_n(\omega)) = X_1(\omega) + \cdots + X_n(\omega) \]

We will denote this function by \(S_n(\omega) \).
Important points about functions of rv’s

- Proposition 1 is a special case of Proposition 2.
- Proposition 2 handles the case $f(X) = \varphi(X, Y)$.
Important points about functions of rv’s

- Proposition 1 is a special case of Proposition 2.
- Proposition 2 handles the case $f(X) = \varphi(X, Y)$.
- Proposition 2 generalizes to functions $\varphi(x_1, \ldots, x_n)$ of n variables:

$$\varphi : \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \to \mathbb{R}$$
Important points about functions of rv’s

- Proposition 1 is a special case of Proposition 2.
- Proposition 2 handles the case $f(X) = \varphi(X, Y)$.
- Proposition 2 generalizes to functions $\varphi(x_1, \ldots, x_n)$ of n variables:

$$\varphi : X_1 \times \cdots \times X_n \to \mathbb{R}$$

- Important Example

 The sum of n random variables:

$$\varphi(X_1(\omega), \ldots, X_n(\omega)) = X_1(\omega) + \cdots + X_n(\omega)$$

 We will denote this function by $S_n(\omega)$.

Chapter 4

What is a random variable?
Formal definition of a random variable.
Functions of random variables.
Distribution and Expectation
Let X be a (real-valued) random variable. For two real numbers $a \leq b$, define the event
\[A = \{ a \leq X \leq b \} = \{ \omega \in \Omega | a \leq X(\omega) \leq b \} \].

Is this really an event? What is $P(A)$?

\[P(A) = P(a \leq X \leq b) = P(\{ \omega | a \leq X(\omega) \leq b \}) \].
Let X be a (real-valued) random variable.
Let X be a (real-valued) random variable. For two real numbers $a \leq b$, define the event

$$A = \{ a \leq X \leq b \}$$
Let X be a (real-valued) random variable.

For two real numbers $a \leq b$, define the event

$$A = \{ a \leq X \leq b \}$$

Is this really an event?
Let X be a (real-valued) random variable.
For two real numbers $a \leq b$, define the event
\[A = \{ a \leq X \leq b \} \]

Is this really an event?
What is $P(A)$?
Let X be a (real-valued) random variable.

For two real numbers $a \leq b$, define the event

$$A = \{a \leq X \leq b\} = \{\omega \in \Omega \mid a \leq X(\omega) \leq b\}.$$

Is this really an event?

What is $P(A)$?
Let X be a (real-valued) random variable.

For two real numbers $a \leq b$, define the event

$$A = \{ a \leq X \leq b \} = \{ \omega \in \Omega \mid a \leq X(\omega) \leq b \}.$$

Is this really an event?

What is $P(A)$?

$$P(A) = P(a \leq X \leq b) = P(\{ \omega \mid a \leq X(\omega) \leq b \}).$$
More generally, let \mathbb{R} be a set of real numbers. For example, $\mathbb{R} = [0, 2] = \{ x \in \mathbb{R} | 0 \leq x \leq 2 \}$, and consider the event $\{ X \in \mathbb{R} \}$. Then, $P(\{ X \in \mathbb{R} \}) = P(\{ \omega | X(\omega) \in \mathbb{R} \})$.

If $\mathbb{R} = [0, 2]$, then $P(\{ X \in \mathbb{R} \}) = P(\{ \omega | X(\omega) \in [0, 2] \}) = P(0 \leq X \leq 2) = P(\{ \omega | 0 \leq X(\omega) \leq 2 \})$.

What if \mathbb{R} is a single number, say, $\mathbb{R} = \{ 1.5 \}$?
More generally, let R be a set of real numbers. For example,

$$R = [0, 2] = \{x \in \mathbb{R} \mid 0 \leq x \leq 2\},$$

and consider the event $\{X \in R\}$.

What if R is a single number, say, $R = \{1.5\}$?
More generally, let R be a set of real numbers. For example,

$$R = [0, 2] = \{x \in \mathbb{R} \mid 0 \leq x \leq 2\},$$

and consider the event $\{X \in R\}$.

Then,

$$P(X \in R) = P(\{\omega \mid X(\omega) \in R\}).$$
More generally, let R be a set of real numbers. For example,

$$R = [0, 2] = \{ x \in \mathbb{R} \mid 0 \leq x \leq 2 \},$$

and consider the event $\{ X \in R \}$.

Then,

$$P(X \in R) = P(\{ \omega \mid X(\omega) \in R \})$$

If $R = [0, 2]$, then

$$P(X \in R) = P(\{ \omega \mid X(\omega) \in [0, 2] \}) = P(0 \leq X \leq 2) = P(\{ \omega \mid 0 \leq X(\omega) \leq 2 \}).$$
More generally, let R be a set of real numbers. For example,

$$R = [0, 2] = \{x \in \mathbb{R} \mid 0 \leq x \leq 2\},$$

and consider the event $\{X \in R\}$.

Then,

$$P(X \in R) = P(\{\omega \mid X(\omega) \in R\})$$

If $R = [0, 2]$, then

$$P(X \in R) = P(\{\omega \mid X(\omega) \in [0, 2]\})$$

$$= P(0 \leq X \leq 2) = P(\{\omega \mid 0 \leq X(\omega) \leq 2\}).$$

What if R is a single number, say, $R = \{1.5\}$?
Suppose X is a random variable with range of possible values \{ x_1, x_2, \ldots, x_n \}. That is, for each $\omega \in \Omega$, we have $X(\omega) = x_k$ for some $k = 1, 2, \ldots, n$.

Suppose we know the values $p_k = P(X = x_k)$ for each $k = 1, 2, \ldots, n$. Then, for any subset $R \subset \{x_1, \ldots, x_n\}$, we can compute $P(X \in R) = \sum_{x_k \in R} P(X = x_k) = \sum_{x_k \in R} p_k$.
Suppose X is a random variables with range of possible values $\{x_1, x_2, \ldots, x_n\}$. That is, for each $\omega \in \Omega$, we have

$$X(\omega) = x_k \quad \text{for some } k = 1, 2, \ldots, n.$$
Suppose X is a random variables with range of possible values $\{x_1, x_2, \ldots, x_n\}$. That is, for each $\omega \in \Omega$, we have

$$X(\omega) = x_k \quad \text{for some } k = 1, 2, \ldots, n.$$

Suppose we know the values $p_k = P(X = x_k)$ for each $k = 1, 2, \ldots, n$.

$$p_k = P(X = x_k)$$

for each $k = 1, 2, \ldots, n$.

Suppose X is a random variables with range of possible values \{\(x_1, x_2, \ldots, x_n\)\}. That is, for each \(\omega \in \Omega\), we have

\[X(\omega) = x_k\quad \text{for some } k = 1, 2, \ldots, n.\]

Suppose we know the values

\[p_k = P(X = x_k)\]

for each \(k = 1, 2, \ldots, n\).

Then, for any subset \(R \subset \{x_1, \ldots, x_n\}\), we can compute

\[P(X \in R) = \sum_{x_k \in R} P(X = x_k) = \sum_{x_k \in R} p_k.\]
Distribution Function of a Random Variable

When $R = (-\infty, x]$, we define $F_X(x) = P(X \in R) = P(X \leq x) = \sum_{x_k \leq x} p_k$.

For two real numbers $a \leq b$, we have $P(a < X \leq b) = P(X \leq b) - P(X \leq a) = F_X(b) - F_X(a)$.

Can you see why?

Hint: Describe the event \{X \leq b\} as a disjoint union.
When \(R = (-\infty, x] \), we define

\[
F_X(x) = P(X \in R) = P(X \leq x) = \sum_{x_k \leq x} p_k.
\]
When $R = (-\infty, x]$, we define

$$F_X(x) = P(X \in R) = P(X \leq x) = \sum_{x_k \leq x} p_k.$$

For two real numbers $a \leq b$, we have

$$P(a < X \leq b) = P(X \leq b) - P(X \leq a) = F_X(b) - F_X(a).$$

Can you see why?
Distribution Function of a Random Variable

- When $R = (-\infty, x]$, we define

 $$F_X(x) = P(X \in R) = P(X \leq x) = \sum_{x_k \leq x} p_k.$$

- For two real numbers $a \leq b$, we have

 $$P(a < X \leq b) = P(X \leq b) - P(X \leq a) = F_X(b) - F_X(a).$$

Can you see why?

Hint: Describe the event $\{X \leq b\}$ as a disjoint union.
Mathematical Expectation

Let X be a random variable defined on a countable sample space Ω.

Definition
The mathematical expectation of X is the number

$$E(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\}),$$

provided this series converges absolutely.

Think “weighted average,” with weights $P(\{\omega\})$.

Example
As above, let X be a rv with values $\{x_1, x_2, \ldots, x_n\}$, and let $p_k = P(X = x_k)$.

$$E(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\}) = n \sum_{k=1}^{n} x_k p_k.$$
Mathematical Expectation

Let X be a random variable defined on a countable sample space Ω.

Definition

The **mathematical expectation** of X is the number

$$E(X) = \sum_{\omega \in \Omega} X(\omega)P(\{\omega\}),$$

provided this series converges absolutely.
Mathematical Expectation

Let X be a random variable defined on a countable sample space Ω.

Definition

The **mathematical expectation** of X is the number

$$E(X) = \sum_{\omega \in \Omega} X(\omega)P(\{\omega\}),$$

provided this series converges absolutely.

Think “weighted average,” with weights $P(\{\omega\})$.
Let X be a random variable defined on a countable sample space Ω.

Definition

The mathematical expectation of X is the number

$$E(X) = \sum_{\omega \in \Omega} X(\omega)P(\{\omega\}),$$

provided this series converges absolutely.

Think “weighted average,” with weights $P(\{\omega\})$.

Example

As above, let X be a rv with values $\{x_1, x_2, \ldots, x_n\}$, and let $p_k = P(X = x_k)$.

$$E(X) = \sum_{\omega \in \Omega} X(\omega)P(\{\omega\}) = \sum_{k=1}^{n} x_k P(X = x_k) = \sum_{k=1}^{n} x_k p_k.$$
Examples of Mathematical Expectation

- *Waiting time* for a head to appear in a sequence of tosses of a (biased) coin.
Examples of Mathematical Expectation

- *Waiting time* for a head to appear in a sequence of tosses of a (biased) coin.
- *Waiting time* for a red to appear in a sequence of spins of a roulette wheel.

\[
X = \text{number of spins until red appears.}
\]

\[
p = P(\text{red}) = \frac{18}{38} \approx 0.47
\]

\[
q = P(\text{not red}) = \frac{20}{38} \approx 0.53
\]

\[
P(X = n) = q^{n-1}p
\]

\[
E(X) = \sum_{n=1}^{\infty} n P(X = n) = \frac{1}{p}
\]
Examples of Mathematical Expectation

- **Waiting time** for a head to appear in a sequence of tosses of a (biased) coin.
- **Waiting time** for a red to appear in a sequence of spins of a roulette wheel.

\[X = \text{number of spins until red appears.} \]
Examples of Mathematical Expectation

- *Waiting time* for a head to appear in a sequence of tosses of a (biased) coin.
- *Waiting time* for a red to appear in a sequence of spins of a roulette wheel.

Let

\[X = \text{number of spins until red appears.} \]

where

\[p = P(\text{red}) = \]
\[q = P(\text{not red}) = \]

Then

\[P(X = n) = \]

\[E(X) = \]
Examples of Mathematical Expectation

- **Waiting time** for a head to appear in a sequence of tosses of a (biased) coin.

- **Waiting time** for a red to appear in a sequence of spins of a roulette wheel.

\[X = \text{number of spins until red appears.} \]

\[p = P(\text{red}) = \frac{18}{38} \approx 0.47 \]

\[q = P(\text{not red}) = \]

\[P(X = n) = \]

\[E(X) = \]

\[W. \text{DeMeo (willi amendemeo@gmail.com)} \]

Chapter 4: Random Variables

July 1, 2011
Examples of Mathematical Expectation

- **Waiting time** for a head to appear in a sequence of tosses of a (biased) coin.
- **Waiting time** for a red to appear in a sequence of spins of a roulette wheel.

Let X be the number of spins until red appears.

$$P(X = n) = q^{n-1}p$$

$$E(X) = \sum_{n=1}^{\infty} n P(X = n)$$

$p = P(\text{red}) = \frac{18}{38} \approx 0.47$

$q = P(\text{not red}) = \frac{20}{38} \approx 0.53$
Examples of Mathematical Expectation

- **Waiting time** for a head to appear in a sequence of tosses of a (biased) coin.
- **Waiting time** for a red to appear in a sequence of spins of a roulette wheel.

Let X = number of spins until red appears.

- $p = P(\text{red}) = 18/38 \approx 0.47$
- $q = P(\text{not red}) = 20/38 \approx 0.53$

Then,

$$P(X = n) = (q \cdots q)p = q^{n-1}p$$

$$E(X) =$$
Examples of Mathematical Expectation

- **Waiting time** for a head to appear in a sequence of tosses of a (biased) coin.
- **Waiting time** for a red to appear in a sequence of spins of a roulette wheel.

Let X be the number of spins until red appears.

- $p = P(\text{red}) = 18/38 \approx 0.47$
- $q = P(\text{not red}) = 20/38 \approx 0.53$

The probability of getting red on the nth spin is:

$$P(X = n) = (q \cdots q)p = q^{n-1}p$$

The expected value $E(X)$ is:

$$E(X) = \sum_{n=1}^{\infty} n P(X = n) = \frac{1}{p}$$