such that G_1, \ldots, G_n are non-trivial indecomposable normal subgroups of G. Suppose that no two of the groups G_1, \ldots, G_n are isomorphic. Then G_1, \ldots, G_n are characteristic subgroups of G and

$$\text{Aut } G \cong \text{Aut } G_1 \times \cdots \times \text{Aut } G_n.$$

(cf. 342; also see 94.)

437 Give an example of a finite abelian group G such that $G = A \times B$, where A and B are non-isomorphic non-trivial indecomposable subgroups of G, and such that G has subgroups A^* and B^*, distinct from A and B, and with $G = A^* \times B^*$ (cf. 8.18).

We shall now prove a result about subgroups of the direct product of two groups. In chapter 9 we shall apply this result to the extension problem: see 9.28.

8.19 Theorem (Remak [a80], Klein, Frick [b26]). Let H and K be normal subgroups of G such that $G = H \times K$, and let π and ρ be the corresponding projections of G onto H and K, respectively. Let $L \subseteq G$. Then

(i) $(H \cap L) \trianglelefteq L \pi \trianglelefteq H, (K \cap L) \trianglelefteq L \rho \trianglelefteq K$ and $L \pi / (H \cap L) \cong L \rho / (K \cap L)$.

(ii) $L = (H \cap L) \times (K \cap L)$ if and only if $L \pi = H \cap L$ (or if and only if $L \rho = K \cap L$).

Proof. (i) We know that π and ρ are homomorphisms (3.11).

Since $H \subseteq G, (H \cap L) \subseteq L \subseteq G$. Therefore (87)

$$(H \cap L) \pi \subseteq L \pi \subseteq G \pi = H.$$

By definition, $\pi|_H$ is the identity map on H.

Therefore $$(H \cap L) \pi = H \cap L.$$

Hence $$(H \cap L) \subseteq L \pi \subseteq H.$$

Similarly $$(K \cap L) \subseteq L \rho \subseteq K.$$

We now define a map

$$\varphi : L \pi \rightarrow L \rho / (K \cap L).$$

For each element $h \in L \pi$, there is an element $k \in K$ such that $hk \in L$. Then $k \in L \rho$, and we define

$$h \varphi = k(K \cap L).$$

The element k is not necessarily uniquely determined by h, and so we must check that this definition of $h \varphi$ does not depend on the choice of k. If also $k' \in K$ with $hk' \in L$ then

$$k^{-1}k' = (hk)^{-1}(hk') \in K \cap L,$$

and so $k'(K \cap L) = k(K \cap L)$.

Thus φ is well defined.
Let $h_1, h_2 \in L\pi$ and let $k_1, k_2 \in K$ with $h_1 k_1, h_2 k_2 \in L$. Then $h_1 h_2 \in L\pi$, $k_1 k_2 \in K$ and, since $[H, K] = 1$,

$$(h_1 h_2)(k_1 k_2) = (h_1 k_1)(h_2 k_2) \in L.$$

Therefore

$$(h_1 h_2)\varphi = k_1 k_2 (K \cap L) = (h_1 \varphi)(h_2 \varphi).$$

Thus φ is a homomorphism. It is surjective because, for any $k \in L\rho$, there is an element $h \in H$ such that $hk \in L$, and then $h \in L\pi$ and $h\varphi = k(K \cap L)$. Moreover,

$$\text{Ker } \varphi = \{h \in L\pi : hk \in L \text{ for some element } k \in K \cap L\}$$

$$= \{h \in L\pi : h \in L\}$$

$$= H \cap L \text{ (since } (H \cap L)\pi = H \cap L).$$

Therefore, by the fundamental theorem on homomorphisms,

$$L\pi/(H \cap L) = L\pi/\text{Ker } \varphi \cong \text{Im } \varphi = L\rho/(K \cap L).$$

(ii) Clearly

$$(H \cap L) \times (K \cap L) \leq L \leq L\pi \times L\rho.$$

If $L\pi = H \cap L$ then it follows from (i) that $L\rho = K \cap L$. Then the inclusions above imply that

$$L = (H \cap L) \times (K \cap L).$$

If, conversely, $L = (H \cap L) \times (K \cap L)$ then it is clear from the definitions of π and ρ that

$$L\pi = H \cap L \text{ and } L\rho = K \cap L.$$

8.20 Corollary. Let $G = H \times K$. Suppose that G is finite and that $(|H|, |K|) = 1$. Then, for every subgroup L of G,

$$L = (H \cap L) \times (K \cap L).$$

Proof. Let $L \leq G$ and let π, ρ be defined as in 8.19. Then $L\pi \leq H$ and $L\rho \leq K$. Hence, by hypothesis,

$$(|L\pi|, |L\rho|) = 1.$$

Since, by 8.19(i), $L\pi/(H \cap L) \cong L\rho/(K \cap L)$, this implies that $|L\pi/(H \cap L)| = 1$, hence that $L\pi = H \cap L$. Thus, by 8.19(ii),

$$L = (H \cap L) \times (K \cap L).$$

Remark. This result would of course fail in general without the condition that $(|H|, |K|) = 1$. For instance, let $G = \langle a \rangle \times \langle b \rangle$ with $o(a) = o(b) = 2$. Then $\langle ab \rangle$ is a subgroup of G of order 2, but $\langle a \rangle \cap \langle ab \rangle = 1 = \langle b \rangle \cap \langle ab \rangle$.
438 Let H and K be normal subgroups of G such that $G = H \times K$, and let π and ρ be the corresponding projections of G onto H and K, respectively. Suppose that

$$H_2 \trianglelefteq H_1 \trianglelefteq H, \quad K_2 \trianglelefteq K_1 \trianglelefteq K \quad \text{and} \quad H_1/H_2 \cong K_1/K_2.$$

Let θ be any isomorphism of H_1/H_2 onto K_1/K_2, and let

$$L = \{hk : h \in H_1, k \in K_1 \text{ and } (hH_2)\theta = kK_2\}.$$

Then $L \trianglelefteq G$ and

$$H \cap L = H_2, \quad L\pi = H_1, \quad K \cap L = K_2, \quad L\rho = K_1.$$

439 Let H and K be normal subgroups of G such that $G = H \times K$, and let π be the corresponding projection of G onto H. Let $L \trianglelefteq G$ and let $J = (H \cap L) \times (K \cap L)$. Then $J \trianglelefteq L$ and

$$L/J \cong L\pi/(H \cap L).$$

(See 8.19. Hint. Let $\pi_1 : L \to L\pi$ be defined by restriction of π, and let $\nu : L\pi \to L\pi/(H \cap L)$ be the natural homomorphism. Consider the map $\pi_1 \nu$.)

440 (Remark [a80].) Let H and K be normal subgroups of G such that $G = H \times K$, and let π and ρ be the corresponding projections of G onto H and K, respectively. Let $L \trianglelefteq G$. Then the following two statements are equivalent:

(i) $L \trianglelefteq G$.

(ii) $(H \cap L) \trianglelefteq H, \quad (K \cap L) \trianglelefteq K, \quad L\pi/(H \cap L) \leq Z(H/(H \cap L))$ and $L\rho/(K \cap L) \leq Z(K/(K \cap L)).$

(Hint. To prove that (ii) \Rightarrow (i), let $J = (H \cap L) \times (K \cap L)$. Note that $J \trianglelefteq G$ and use 151 to show that $L/J \leq Z(G/J)$.)

441 Let H and K be normal subgroups of G such that $G = H \times K$, and let π and ρ be the corresponding projections of G onto H and K, respectively. A subgroup L of G is said to be a subdirect product of H and K if $L\pi = H$ and $L\rho = K$.

(i) Let $L \trianglelefteq G$. Then L is a subdirect product of H and K if and only if $HL = G = KL$.

(ii) Let L be a subdirect product of H and K. Then $L \trianglelefteq G$ if and only if $G' \trianglelefteq L$. (Hint. Apply 165 and 440.)

(iii) Suppose that G is finite and that $(|H/H'|, |K/K'|) = 1$. Then no proper normal subgroup of G is a subdirect product of H and K. (Hint. Apply (i) and 8.19.)

442 Let $H \trianglelefteq G$ and $K \trianglelefteq G$. Verify that the homomorphism ψ defined in 109 maps $G/(H \cap K)$ onto a subdirect product of G/H and G/K (see 441).

443 Let H and K be normal subgroups of G such that $G = H \times K$. Then the following two statements are equivalent:

(i) L is a subdirect product of H and K (441).

(ii) For some group J, there are surjective homomorphisms $\varphi : H \to J$ and $\psi : K \to J$ such that

$$L = \{hk : h \in H, k \in K \text{ and } h\varphi = k\psi \}.$$

(Hint. To prove that (i) \Rightarrow (ii), see the proof of 8.19.)

It is convenient to regard the direct product of a finite number of copies of a group G as a group of maps from a suitable set into G. We introduce this group of maps here; we shall return to it in chapter 9. The definition can also be generalized to arbitrary direct products: see 444, 445.