Mailbox

An interval in the subgroup lattice of a finite group which is isomorphic to \(M_7 \).

WALTER FEIT

The study of congruence lattices of finite universal algebra leads to the study of intervals in the subgroup lattices of finite groups. See [1] especially p. 14 or [2] Theorem 2. I am indebted to János Kollár and Peter P. Pálfy who first brought these results to my attention.

For any natural number \(n \) let \(M_n \) denotes the lattice of length 2 with \(n \) atoms.

Let \(H \) be a subgroup of the finite group \(G \). The interval \([H, G]\) in the subgroup lattice of \(G \) is isomorphic to \(M_n \) for some \(n > 0 \) if and only if there are exactly \(n \) subgroups \(K \) with \(H \subseteq K \subseteq G \) and each of these is a maximal subgroup of \(G \).

It is an interesting question to determine those \(n \) such that \(M_n \) is isomorphic to some \([H, G]\).

If \(G \) is solvable and \([H, G]\) is isomorphic to \(M_n \) for some \(n > 2 \) then it is known that \(n = 1 \) is a prime power. See [2] Theorem 3. The object of this note is to give an example that shows in contrast to the solvable case that \(M_7 \) is isomorphic to \([H, G]\) for suitable \(G \) and \(H \).

Let \(G \) be the alternating group on 31 letters. Let \(H \subseteq G \) with \(|H| = 31.5 \) and let \(N = N_G(H) \). Thus \(|N| = 31.5 \).

\(SL_2(2) \) acts on 31 points and 31 hyperplanes in the projective 4 space over \(F_2 \). Thus there exist \(K_1, K_2 \) with \(H \subseteq K_i \subseteq G \) and \(K_i = SL_2(2) \) but \(K_i \) not conjugate to \(K_j \) in \(G \). For \(i = 1, 2 \)

\[\{K_i^x \mid x \in G, H \leq K_i^x \} = \{K_i^x \mid x \in N \}. \]

Thus \(|\{K_i^x \mid x \in G, H \leq K_i^x \}| = 3\).

\(^1 \) This work was partly supported by NSF Grant MCS-8201333.

Presented by H. P. Gumm. Received July 19, 1982. Accepted for publication in final form September 30, 1982.

REFERENCES

Yale University
New Haven, Conn.
U.S.A.