An algebra\(^1\) \(A\) is an ordered pair \(A = \langle A, F \rangle\) where \(A\) is a nonempty set and \(F\) is a family of finitary operations on \(A\). The set \(A\) is called the universe of \(A\), and the elements \(f^A \in F\) are called the fundamental operations of \(A\). (In practice we prefer to write \(f\) for \(f^A\) when this doesn’t cause ambiguity.\(^2\)) The \textit{arity} of an operation is the number of operands upon which it acts, and we say that \(f \in F\) is an \(n\)-ary operation on \(A\) if \(f\) maps \(A^n\) into \(A\). An operation \(f \in F\) is called a \textit{nullary} operation (or constant) if its arity is zero. Unary, binary, and ternary operations have arity 1, 2, and 3, respectively. An algebra \(A\) is called \textit{unary} if all of its operations are unary. An algebra \(A\) is \textit{finite} if \(|A|\) is finite and \textit{trivial} if \(|A| = 1\). Given two algebras \(A\) and \(B\), we say that \(B\) is a \textit{reduct} of \(A\) if both algebras have the same universe and \(A\) is obtained from \(B\) by simply adding more operations.

0.1 Examples

\textbf{groupoid} \(A = \langle A, \cdot \rangle\)

An algebra with a single binary operation is called a \textit{groupoid}. This operation is usually denoted by + or \(\cdot\), and we write \(a + b\) or \(a \cdot b\) (or just \(ab\)) for the image of \(\langle a, b \rangle\) under this operation, and call it the sum or product of \(a\) and \(b\), respectively.

\textbf{semigroup} \(A = \langle A, \cdot \rangle\)

A groupoid for which the binary operation is associative is called a \textit{semigroup}. That is, a semigroup is a groupoid with binary operation satisfying \((a \cdot b) \cdot c = a \cdot (b \cdot c)\), for all \(a, b, c \in A\).

\textbf{monoid} \(A = \langle A, \cdot, e \rangle\)

A \textit{monoid} is a semigroup along with a \textit{multiplicative identity} \(e\). That is, \(\langle A, \cdot \rangle\) is a semigroup and \(e\) is a constant (nullary operation) satisfying \(e \cdot a = a \cdot e = a\), for all \(a \in A\).

\textbf{group} \(A = \langle A, \cdot, ^{-1}, e \rangle\)

A \textit{group} is a monoid along with a unary operation \(^{-1}\) called \textit{multiplicative inverse}. That is, the reduct \(\langle A, \cdot, e \rangle\) is a monoid and \(^{-1}\) satisfies \(a \cdot a^{-1} = a^{-1} \cdot a = e\), for all \(a \in A\). An \textit{Abelian group} is a group with a commutative binary operation, which we usually denote by + instead of \(\cdot\). In this case, we write 0 instead of \(e\) to denote the \textit{additive identity}, and \(-\) instead of \(^{-1}\) to denote the \textit{additive inverse}. Thus, an Abelian group is a group \(A = \langle A, +, -, 0 \rangle\) such that \(a + b = b + a\) for all \(a, b \in A\).

\(1\)N.B. In this first paragraph, not all of the definitions are entirely precise. Rather, my goal here is to state them in a way that seems intuitive and heuristically useful.

\(2\)This convention creates an ambiguity when discussing, for example, homomorphisms from one algebra, \(A\), to another, \(B\); in such cases we will adhere to the more precise notation \(f^A\) and \(f^B\), for operations on \(A\) and \(B\), respectively.
A ring \(A = \langle A, +, \cdot, - , 0 \rangle \) is an algebra \(A = \langle A, +, \cdot, - , 0 \rangle \) such that

R1. \(\langle A, +, - , 0 \rangle \) is an Abelian group,

R2. \(\langle A, \cdot \rangle \) is a semigroup, and

R3. for all \(a, b, c \in A \), \(a \cdot (b + c) = a \cdot b + a \cdot c \) and \((a + b) \cdot c = a \cdot c + b \cdot c \).

A ring with unity (or unital ring) is an algebra \(A = \langle A, +, \cdot, - , 0, 1 \rangle \), where the reduct \(\langle A, +, \cdot, - , 0 \rangle \) is a ring, and where 1 is a multiplicative identity; i.e. \(a \cdot 1 = 1 \cdot a = a \), for all \(a \in A \).

A field \(A = \langle A, +, \cdot, - , 0, 1 \rangle \) is a ring with unity, an element \(r \in A \) is called a unit if it has a multiplicative inverse. That is, \(r \in A \) is a unit provided there exists \(r^{-1} \in A \) with \(r \cdot r^{-1} = r^{-1} \cdot r = 1 \). A division ring is a ring in which every non-zero element is a unit, and a field is a division ring in which multiplication is commutative.

0.2 Vector Spaces, Modules, and Bilinear Algebras

module Let \(R = \langle R, +, \cdot, - , 0, 1 \rangle \) be a ring with unit. An \(R \)-module (sometimes called a left unitary \(R \)-module) is an algebra \(M = \langle M, +, - , 0, f_r \rangle_{r \in R} \) with an Abelian group reduct \(\langle M, +, - , 0 \rangle \), and with unary operations \((f_r)_{r \in R} \) which satisfy the following four conditions for all \(r, s \in R \) and \(x, y \in M \):

M1. \(f_r(x + y) = f_r(x) + f_r(y) \)

M2. \(f_{r+s}(x) = f_r(x) + f_s(x) \)

M3. \(f_r(f_s(x)) = f_{rs}(x) \)

M4. \(f_1(x) = x \).

If the ring \(R \) happens to be a field, an \(R \)-module is typically called a vector space over \(R \).

Note that condition M1 says that each \(f_r \) is an endomorphism of the Abelian group \(\langle M, +, - , 0 \rangle \). Conditions M2–M4 say: (1) the collection of endomorphisms \((f_r)_{r \in R} \) is itself a ring with unit, where the function composition described in (M3) is the binary multiplication operation, and (2) the map \(r \mapsto f_r \) is a ring epimorphism from \(R \) onto \((f_r)_{r \in R} \).

Part of the importance of modules lies in the fact that every ring is, up to isomorphism, a ring of endomorphisms of some Abelian group. This fact is analogous to the more familiar theorem of Cayley stating that every group is isomorphic to a group of permutations of some set.
bilinear algebra Let \(F = \langle F, +, \cdot, -, 0, 1 \rangle \) be a field. An algebra \(A = \langle A, +, \cdot, -, 0, f_r \rangle_{r \in F} \) is a bilinear algebra over \(F \) provided \(\langle A, +, \cdot, -, 0, f_r \rangle_{r \in F} \) is a vector space over \(F \) and for all \(a, b, c \in A \) and all \(r \in F \),

\[
(a + b) \cdot c = (a \cdot c) + (b \cdot c) \\
c \cdot (a + b) = (c \cdot a) + (c \cdot b) \\
a \cdot f_r(b) = f_r(a \cdot b) = f_r(a) \cdot b
\]

If, in addition, \((a \cdot b) \cdot c = a \cdot (b \cdot c) \) for all \(a, b, c \in A \), then \(A \) is called an associative algebra over \(F \). Thus an associative algebra over a field has both a vector space reduct and a ring reduct.

An example of an associative algebra is the space of linear transformations (endomorphisms) of any vector space into itself.

0.3 Congruence Relations and Homomorphisms

Let \(A \) be a set. A binary relation \(\theta \) on \(A \) is a subset of \(A^2 = A \times A \). If \(\langle a, b \rangle \in \theta \) we sometimes write \(a \theta b \). The diagonal relation on \(A \) is the set \(\Delta_A = \{ \langle a, a \rangle : a \in A \} \) and the all relation is the set \(\nabla_A = A^2 \). (We write \(\Delta \) and \(\nabla \) when the underlying set is apparent.)

equivalence A binary relation \(\theta \) on a set \(A \) is an equivalence relation on \(A \) if, for any \(a, b, c \in A \), it satisfies:

E1. \(\langle a, a \rangle \in \theta \),
E2. \(\langle a, b \rangle \in \theta \) implies \(\langle b, a \rangle \in \theta \), and
E3. \(\langle a, b \rangle \in \theta \) and \(\langle b, c \rangle \in \theta \) imply \(\langle a, c \rangle \in \theta \).

We denote the set of all equivalence relations on \(A \) by \(\text{Eq}(A) \).

If \(\theta \in \text{Eq}(A) \) is an equivalence relation on \(A \) and \(\langle x, y \rangle \in \theta \), we say that \(x \) and \(y \) are equivalent modulo \(\theta \). The set of all \(y \in A \) that are equivalent to \(x \) modulo \(\theta \) is denoted by \(x/\theta = \{ y \in A : \langle x, y \rangle \in \theta \} \) and we call \(x/\theta \) the equivalence class (or coset) of \(x \) modulo \(\theta \). The set \(\{ x/\theta : x \in A \} \) of all equivalence classes of \(A \) modulo \(\theta \) is denote by \(A/\theta \). Clearly equivalence classes form a partition of \(A \), which simply means that \(A = \cup_{x \in A} x/\theta \) and \(x/\theta \cap y/\theta = \emptyset \) if \(x/\theta \neq y/\theta \).

Example: Let \(f : A \to B \) be any map. We define the relation \(\ker(f) \subseteq A \times A \) as follows: for all \(a_0, a_1 \in A \),

\[
\langle a_0, a_1 \rangle \in \ker(f) \quad \iff \quad f(a_0) = f(a_1).
\]

It is an easy exercise to verify that \(\ker(f) \) is an equivalence relation.
Consider two algebras A and B of the same type and let f be an n-ary operation symbol, so that f^A is an n-ary operation of A, and f^B is the corresponding n-ary operation of B. We say that a function $h : A \to B$ respects the interpretation of f if and only if for all $a_1, \ldots, a_n \in A$

$$h(f^A(a_1, \ldots, a_n)) = f^B(h(a_1), \ldots, h(a_n)).$$

References