Chapter 7

Definite Integral

7.1 The concept of the definite Integral

7.2 The condition for the existence of the definite Integral

Theorem 1 (First sufficient and necessary conditions for the existence of the definite integral) The function \(f(x) \) is integrable if and only if

\[
\lim_{\max\{\Delta_n\} \to 0} L(f, P) = \lim_{\max\{\Delta_n\} \to 0} U(f, P)
\]

Proof: proof of necessity: \(f(x) \) is integrable. So \(\forall \varepsilon > 0, \exists \delta > 0 \) such that \(\forall \) partition \(P = \{x_0, \ldots, x_n\} \) with \(\lambda(P) < \delta \) and \(\forall \xi_i \in [x_{i-1}, x_i] \) we have

\[
\left| \sum_{i=1}^{n} f(\xi_i) \Delta x_i - I \right| < \varepsilon/2
\]

where \(I = \int_{a}^{b} f(x) \, dx \). Let \(m_i = \inf\{ f(x) : x \in [x_{i-1}, x_i] \} \), then we have \(\eta_i \in [x_{i-1}, x_i] \) such that

\[
0 \leq f(\eta_i) - m_i \leq \frac{\varepsilon}{2(b - a)}
\]

Then

\[
\left| \sum_{i=1}^{n} f(\eta_i) \Delta x_i - L(f, P) \right| = \left| \sum_{i=1}^{n} (f(\eta_i) - m_i) \Delta x_i \right| = \left| \sum_{i=1}^{n} (f(\eta_i) - f(x)) \Delta x_i \right| \quad (7.1)
\]
\[\leq \frac{\varepsilon}{2(b-a)}(b-a) = \varepsilon/2 \]

On the other hand we have
\[\left| \sum_{i=1}^{n} f(\eta_i) \Delta x_i - I \right| < \varepsilon/2 \quad (7.2) \]

So by (7.1) and (7.2) we get
\[|L(f, P) - I| < \sum_{i=1}^{n} f(\eta_i) \Delta x_i - L(f, P) \bigg| + \sum_{i=1}^{n} f(\eta_i) \Delta x_i - I \bigg| < \varepsilon \]

i.e.
\[\lim_{\max \{\Delta x_i\} \to 0} L(f, P) = I \]

Similarly we can prove that
\[\lim_{\max \{\Delta x_i\} \to 0} U(f, P) = I \]

Hence
\[\lim_{\max \{\Delta x_i\} \to 0} L(f, P) = \lim_{\max \{\Delta x_i\} \to 0} U(f, P) \]

Proof of sufficiency: suppose \(\lim_{\max \{\Delta x_i\} \to 0} L(f, P) = \lim_{\max \{\Delta x_i\} \to 0} U(f, P) \).
Then \(\forall \) partition \(P = \{x_0, \ldots, x_n\} \) with and \(\forall \xi_i \in [x_{i-1}, x_i] \) we have
\[L(f, P) \leq \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leq U(f, P) \]

Letting \(\lambda \to 0 \) yields
\[\lim_{\max \{\Delta x_i\} \to 0} \sum_{i=1}^{n} f(\xi_i) \Delta x_i = I \]

Q.E.D.

Remark 1 The function \(f(x) \) is integrable if and only if
\[\lim_{\max \{\Delta x_i\} \to 0} (L(f, P) - U(f, P)) = 0 \]
Remark 2 \(\omega_i = M_i - m_i \) is called the amplitude of \(f \) on \([x_{i-1}, x_i]\). \(\sum_{i=1}^{n} \omega_i \Delta x_i \) represents the difference of the sums of two sets of rectangles which enclose and inscribe the curve of \(f(x) \) respectively.

Theorem 2 (Second sufficient and necessary conditions for the existence of the definite integral) The function \(f(x) \) is integrable if and only if \(\forall \varepsilon > 0 \) and \(\sigma > 0, \exists \delta > 0 \) such that \(\forall \) partition \(P = \{x_0, \ldots, x_n\} \) with \(\lambda(P) < \delta \) we have the sum \(\sum \Delta x_\nu \) of the lengths of the subintervals \(\Delta x_\nu \) for which the amplitude \(\omega_\nu \geq \varepsilon \) is less than \(\sigma \).

Proof: proof of necessity: suppose \(f(x) \) is integrable. \(\forall \varepsilon > 0 \) and \(\sigma > 0, \exists \delta > 0 \) such that \(\forall \) partition \(P = \{x_0, \ldots, x_n\} \) with \(\lambda(P) < \delta \) we have

\[
\sum_{i=1}^{n} \omega_i \Delta x_i < \sigma \varepsilon
\]

So for the amplitude \(\omega_\nu \geq \varepsilon \) we have

\[
\varepsilon \sum \Delta x_\nu \leq \sum \omega_\nu \Delta x_\nu \leq \sum_{i=1}^{n} \omega_i \Delta x_i < \sigma \varepsilon
\]

which implies

\[
\sum \Delta x_\nu \leq \sigma
\]

\(\sum \Delta x_\nu \) denotes the sum over the subintervals \(\Delta x_\nu \) for which the amplitude \(\omega_\nu \geq \varepsilon \).

Proof of sufficiency: let \(\Delta x_\nu \) be the length of the subinterval for which \(\omega_\nu < \varepsilon \). And \(\sum_{\nu} \) denotes the sum over the such subintervals \(\Delta x_\nu \). Let - be the amplitude of \(f \) over \([a, b]\). Then

\[
\sum_{i=1}^{n} \omega_i \Delta x_i = \sum_{\nu} \omega_\nu \Delta x_\nu + \sum_{\nu'} \omega_{\nu'} \Delta x_{\nu'} < - \sum_{\nu} \Delta x_\nu + \varepsilon \sum_{\nu'} \Delta x_{\nu'} < - \sigma + \varepsilon (b - a)
\]

Because \(\sigma \) and \(\varepsilon \) are arbitrary numbers \(\lim_{\lambda \to 0} \sum_{i=1}^{n} \omega_i \Delta x_i \).
7.2.1 The class of integrable functions

1. The continuous function \(f(x) \) over \([a, b]\) is integrable.

 Proof: \(f(x) \) is continuous over \([a, b]\) then it’s uniformly continuous over \([a, b]\). So \(\forall \varepsilon > 0, \exists \delta > 0 \) such that \(\forall \) two arbitrary points \(x', x'' \in [a, b] \) with \(|x' - x''| < \delta \) we have \(|f(x') - f(x'')| < \frac{\varepsilon}{b-a} \). Then \(\forall \) partition \(P = \{x_0, \ldots, x_n\} \) with \(\lambda(P) < \delta \) we have \(M_i - m_i = \omega_i \leq \frac{\varepsilon}{b-a} \). This implies \(U(f, P) - L(F, P) = \sum_{i=1}^{n} \omega_i \Delta x_i \leq \frac{\varepsilon}{b-a} \sum_{i=1}^{n} \Delta x_i = \varepsilon \). Therefore \(f(x) \) is integrable. Q.E.D.

2. The piecewisely continuous function \(f(x) \) is integrable over \([a, b]\).

 Proof: suppose that \(f(x) \) has \(k \) discontinuities \(x'_1, x'_2, \ldots, x'_k \). So \(\forall \varepsilon > 0 \) and \(\sigma > 0, \exists \delta > 0 \) and \(\delta < \frac{\varepsilon}{2k} \) such that \(\forall \) partition \(P = \{x_0, \ldots, x_n\} \) with \(\lambda(P) < \delta \) the amplitude \(\omega_i \) of \(f \) over the subinterval which does not contain any discontinuity \(x'_i \)'s is less than \(\varepsilon \) and the sum of the lengths of the subintervals over which the amplitude \(\omega_i \) of \(f \) is greater than or equal to \(\varepsilon \) is at most \(2k \times \delta = \sigma \). Then it’s done by Theorem 6.

3. The monotone function \(f(x) \) is integrable over \([a, b]\).

 Proof: suppose that \(f(x) \) is increasingly monotone.\(\forall \varepsilon > 0 \) let \(\delta = \frac{\varepsilon}{f(b) - f(a)} \).

 Then \(\forall \) partition \(P = \{x_0, \ldots, x_n\} \) with \(\lambda(P) < \delta \) we have \(\omega_i = f(x_i) - f(x_{i-1}) \geq 0 \) and

 \[
 \sum_{i=1}^{n} \omega_i \Delta x_i \leq \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \Delta x_i
 \]

 \[
 \leq \sum_{i=1}^{n} (f(x_i) - f(x_{i-1})) \delta
 \]

 \[
 \leq \frac{\varepsilon}{f(b) - f(a)} \sum_{i=1}^{n} (f(x_i) - f(x_{i-1}))
 \]

 \[
 \leq \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a))
 \]

 \[
 < \varepsilon
 \]

So \(f(x) \) is integrable over \([a, b]\).

the http://www.actuaryjobs.com/

http://dir.sogou.com/dirsearch.jsp?classkey=C005037