1. Convert 30° to radian measure
 exact answer using π: 3 symbols, chk=6
 two-place decimal answer: 3 symbols, chk=7
2. Convert 150° to radian measure
 exact answer using π: 4 symbols, chk=11
 two-place decimal answer: 4 symbols, chk=10
3. Convert 3π radians to degrees
 4 symbols, chk=9
4. Convert 3π/2 radians to degrees
 4 symbols, chk=9

§6.1 475:49-56, 77-80.
5. Find the radian measure of an angle which intercepts a
 2 cm arc on a circle of radius 3 cm? Exact answer.
 3 symbols+units, chk=5
6. Find the length of an arc which is intercepted by a π/5
 radian angle on a circle of radius 12 cm? Exact answer.
 5 symbols + units, chk=8
7. A point rotates around a circle of radius 20 cm at 15
 revolutions/sec.
 (a) Find its angular speed ω. Give the exact answer using π.
 ω = 3 symbols + units, chk=3
 (b) Find its linear speed. Give the exact answer using π.
 4 symbols + units, chk=6

8. Sketch π/6, -π/6 and -5π/6 in standard position, all
 on the same graph.

§5.2 416:3-8, 23-26.
 4 integers, 2 undefined
 \[\begin{array}{cc}
 \sin(-\pi/2) = & \csc(-\pi/2) = \\
 \cos(-\pi/2) = & \sec(-\pi/2) = \\
 \tan(-\pi/2) = & \cot(-\pi/2) = \\
 \end{array}\]

10. Find the six trigonometric functions of 4π.
 4 integers, 2 undefined
 \[\begin{array}{cc}
 \sin(4\pi) = & \csc(4\pi) = \\
 \cos(4\pi) = & \sec(4\pi) = \\
 \tan(4\pi) = & \cot(4\pi) = \\
 \end{array}\]

11. A point (x,y) on the unit circle and on the terminal
 side of an angle θ is in the fourth quadrant.
 Find the six trigonometric functions if x = 1/3.
 4 answers have a radical, give exact answers, not decimals.
 \[\begin{array}{cc}
 \sin \theta = & \csc \theta = \\
 \cos \theta = & \sec \theta = \\
 \tan \theta = & \cot \theta = \\
 \end{array}\]

12. A point (x,y) on the unit circle and on the terminal
 side of an angle θ is in the first quadrant.
 Find the six trigonometric functions if x = 3/5.
 Rational answers, give exact answers, not decimals.
 Use improper fractions, not mixed fractions. E.g. 3/2, not 1½.
 \[\begin{array}{cc}
 \sin \theta = & \csc \theta = \\
 \cos \theta = & \sec \theta = \\
 \tan \theta = & \cot \theta = \\
 \end{array}\]

13. Complete the table. Mark “+” where the functions are
 positive, “-” where they are negative.
 \[\begin{array}{cccc}
 \cos \theta, \sec \theta & \sin \theta, \csc \theta & \tan \theta, \cot \theta \\
 \text{Quad I} & \text{Quad II} & \text{Quad III} & \text{Quad IV} \\
 \end{array}\]