9. Find two different 2×2 matrices A, B with integer entries such that $AB = O_{2 \times 2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.

11. Find two different 2×2 matrices A, B such that $AB = I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

21. Find the scalar r such that $AX = rX$ where $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5 \end{bmatrix}$ and $X = \begin{bmatrix} -1/2 \\ 1/4 \\ 1 \end{bmatrix}$.

23. Find a scalar s such that $A^2X = sX$ when $AX = rX$

Page 35.

5. Describe all matrices that are both upper and lower triangular

7. If $AB = BA$ show that $(AB)^2 = A^2B^2$

9. Find a 2×2 matrix $B \neq O_2$ and $B \neq I_2$ such that $AB = BA$, where $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. How many such matrices B are there?

13. Show that if A is a symmetric matrix, than A^T is symmetric.

Answers

Page 25.

9. Many possible answers:

$$\begin{bmatrix} 10 \\ 00 \end{bmatrix}, \begin{bmatrix} 00 \\ 01 \end{bmatrix}$$

11. Many possible answers:

$$\begin{bmatrix} 10 \\ 02 \end{bmatrix}, \begin{bmatrix} 20 \\ 02 \end{bmatrix}$$

21. $r = 2$. To find r, transform the matrix equation into a system of 3 linear equations. Use one equation (the middle equation $\frac{1}{2} = r\left(\frac{1}{2}\right)$ is the easiest) to solve for r.

23. $s = r^2$.

Page 35.

5. Diagonal matrices.

9. Many possible answers, one is $\begin{bmatrix} 1 & 3 \\ 3 & 1 \end{bmatrix}$

13. $(A^T)^T$ (since for any B, $B^T = B$) = A (since A is symmetric) = A^T.