16(2). Suppose A is $n \times n$.
(a) Show that $A + A^T$ is symmetric.

(b) Show that $A - A^T$ is skew symmetric.

18(2). Suppose A and B are symmetric $n \times n$ matrices.
(a) Show that $A + B$ is symmetric.

(b) Show that AB is symmetric iff $AB = BA$.

26(2). Find A if A is nonsingular and $A^{-1} = \begin{bmatrix} 2 & 1 \\ 4 & 1 \end{bmatrix}$.

28(2). $A^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$. Solve $AX = B$ if
(a) $B = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$
(b) $B = \begin{bmatrix} 8 \\ 15 \end{bmatrix}$

36(2). Suppose $AB = AC$ and A is nonsingular. Prove $B = C$.

38(2). Suppose A is symmetric and nonsingular. Prove A^{-1} is symmetric.

42'(3) (A problem with a ‘ has been modified, it differs from text version.)

Partition X, Y, and Z each into four 2×2 matrices.

Write each Z_i in terms of the X_i and Y_i's and then calculate it.

Z_1 has been done for you. Do Z_2, Z_3, and Z_4.

Finally write Z which is 4×4 and whose entries sum to 20.