23. Show that the matrix \(A = \begin{bmatrix} 2 & 3 \\ 4 & 6 \end{bmatrix} \) is singular.

25. Find the inverse of each of the following matrices.
(a) \(A = \begin{bmatrix} 1 & 3 \\ 5 & 2 \end{bmatrix} \)

(b) \(A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \)

27. If \(A^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 3 \end{bmatrix} \) and \(B^{-1} = \begin{bmatrix} 2 & 5 \\ 3 & -2 \end{bmatrix} \), find \((AB)^{-1}\).

29. Find a solution to the linear system \(AX = B \) where \(A \) is the matrix in 25(a) above and
(a) \(B = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \)

(b) \(B = \begin{bmatrix} 5 \\ 6 \end{bmatrix} \)

37. Show that if \(A \) is nonsingular and \(AB = O_n \), then \(B = O_n \) where \(A, B \) are \(n \times n \).

39. Consider the homogeneous system \(AX = O \), where \(A \) is \(n \times n \). If \(A \) is nonsingular, show that the only solution is the trivial one, \(X = O \).

Answers
23. The second row is twice the first row. Hence the two rows are not independent. If one converted \(AX = O \) into two simultaneous equations, the second equation would just be a multiple of the first and could be deleted. Thus we would have one equation and two variables. Thus there is no unique solution.

25. (a) \(A^{-1} = \begin{bmatrix} -2 & 3 \\ 13 & -1 \end{bmatrix} \), (b) \(A^{-1} = \begin{bmatrix} -1 & 2 \\ 3 & -1 \end{bmatrix} \)

27. \(A = \begin{bmatrix} 11 & 19 \\ 7 & 0 \end{bmatrix} \)

29. (a) \(B = \begin{bmatrix} 6 \\ 13 \\ 11 \\ 13 \end{bmatrix} \), (b) \(B = \begin{bmatrix} 8 \\ 13 \\ 19 \\ 13 \end{bmatrix} \)

37. If \(A \) is nonsingular, it has an inverse \(A^{-1} \) with \(A^{-1}A = I_n \). Hence \(AB = O_n \) implies \(A^{-1}AB = A^{-1}O_n \) implies \(IB = O_n \) implies \(B = O_n \). Recall \(DO_n = O_n \) by the zero law.

39. If \(A \) is nonsingular, it has an inverse \(A^{-1} \) with \(A^{-1}A = I_n \). If \(AX = O \), then \(A^{-1}AX = A^{-1}O \), and so \(IX = O \), and hence \(X = O \).