Math 311 Lecture 6

For today, all matrices will have \(n \) rows, for some fixed \(n \).
I means \(I_n \).

Lemma. If \(B \) is invertible and \(BA = I \), then \(A^{-1} = B \).

Proof. \(BA = I \) \(\implies B^{-1}BA = B^{-1} \) \(\implies A = B^{-1} \) \(\implies \), since being inverse is symmetrical, \(A^{-1} = B \).

Recall the three elementary row operations: swap two rows, multiply a row by a nonzero constant, and add a constant multiple of one row to another row.

Definition. If \(A \) and \(B \) have the same number of rows, \(A : B \) consists of the columns of \(A \) followed by the columns of \(B \).

Lemma. For any row operation \(e \), \((eA : eB) = e(A : B) \).

Lemma. Every elementary row operation is invertible.

Proof. Swapping two rows twice, gives back the original matrix. The inverse of multiplying a row by \(a \) is multiplying it by \(a^{-1} \). The inverse of adding \(a \) times another row \(j \) is subtracting \(a \) times row \(j \).

Definition. For any row operation \(e \), let \(e(A) \) be the result of applying \(e \) to \(A \). \(e(A) \) is an **elementary matrix**.

Lemma. For any row operation \(e \), the elementary matrix \(e(A) \) is invertible. For any matrix \(A \), \(e(A) = e(A) \).

Lemma. A product of elementary matrices is invertible.

Proof. The product of invertible matrices is invertible.

- Let \(e = \) swap rows \(1, 2 \). Then \(E = e(I) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \).
- \(E(\begin{pmatrix} p & q \\ r & s \end{pmatrix}) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} p & q \\ r & p \end{pmatrix} = e(\begin{pmatrix} p & q \\ r & p \end{pmatrix}) \).

Let \(f = \) multiply last row by \(a \). \(F = f(I) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix} \).

- \(F(\begin{pmatrix} p & q \\ r & s \end{pmatrix}) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}\begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} p & aq + rs \\ ar + as & ps \end{pmatrix} = f(\begin{pmatrix} p & aq + rs \\ ar + as & ps \end{pmatrix}) \).

Let \(g = \) add \(a \) times first row to last row.

- \(G = g(I) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \).
- \(G(\begin{pmatrix} p & q \\ r & s \end{pmatrix}) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}\begin{pmatrix} p & q \\ r & s \end{pmatrix} = \begin{pmatrix} p & ap + rs \\ ar + aq + s \end{pmatrix} = g(\begin{pmatrix} p & ap + rs \\ ar + aq + s \end{pmatrix}) \).

Suppose applying a sequence \(e_1, e_2, e_3, \ldots, e_n \) of row operations to \(A \) gives \(B \). \(B = e_n(\ldots(e_3(e_2(e_1(A))))\ldots) = (e_n\ldots(e_2(e_1)))A \). Hence applying multiplying on left by \((e_n\ldots(e_2(e_1)))A \) equals the result of applying the original sequence of operations.

Theorem. If a sequence of row operations converts \((A : I) \) to \((I : B) \), then \(B = A^{-1} \).

Proof. Suppose \(e_n(\ldots e_3(e_2(e_1(A : I))))\ldots) = (I : B) \).

- \(e_n(\ldots e_2(e_1)) = I \) & \(e_n(\ldots e_2(e_1(I))) = B \).
- \((e_n\ldots e_2(e_1))A = I \) and \((e_n\ldots e_2(e_1))I = B \). By the lemma above, \(A^{-1} = e_n\ldots e_2(e_1) = e_n\ldots e_2(e_1)I = B \).