Math 311 Lecture 13

THEOREM. Suppose U and W are subsets of a vector space V, and suppose W independent and W spans V, hence by (a) \(u \leq w \).

PROOF. (a) By the second theorem, W can be extended to a basis. By hypothesis, no strictly larger set is independent. Hence it must be a basis.

(b) By the first theorem, a subset of W is a basis. By hypothesis, no strictly smaller set spans V. Hence W is a basis.

COROLLARY. Suppose W is a subset of a vector space V, W has w elements and V has dimension n.

(a) W independent implies \(w \leq n \); \(w > n \) implies W is not span.

(b) W spans V implies \(w \geq n \); \(w < n \) implies W doesn’t span V.

(c) W independent and \(w = n \) implies W is a basis.

(d) W spans V and \(w = n \) implies W is a basis.

PROOF. (a) and (b) follow the theorem above. (c) and (d) follow from the corollary above.

Definition. The dimension \(n \) of a vector space V is the number of elements in any basis of V. If \(V = \{0\} \), the dimension is 0.

Corollary. Suppose W is a subset of a vector space V, W has w elements and V has dimension n.

(a) W independent implies \(w \leq n \); \(w > n \) implies W is not span.

(b) W spans V implies \(w \geq n \); \(w < n \) implies W doesn’t span V.

(c) W independent and \(w = n \) implies W is a basis.

(d) W spans V and \(w = n \) implies W is a basis.