Math 311 Lecture 17

Assumption for the Day. Assume all vectors are either row vectors in \(\mathbb{R}^n \) or column vectors in \(\mathbb{R}^n \) for some \(n \).

Definition. For any row vectors \(u = [a_1, a_2, \ldots, a_n] \), \(v = [b_1, b_2, \ldots, b_n] \), \(u \cdot v \), the inner product (also called the standard inner product or dot product) of \(u \) and \(v \) is the scalar \(a_1b_1 + a_2b_2 + \ldots + a_nb_n \). The inner product of column vectors is defined the same way.

- If \(u = [1,0,0], \ v = [0,1,0] \), then \(u \cdot v = 1 \cdot 0 + 0 \cdot 1 + 0 \cdot 0 = 0 \).

If \(u = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \ v = \begin{bmatrix} 2 \\ 3 \end{bmatrix} \), then \(u \cdot v = 2 \cdot 2 + 2 \cdot 3 = 12 \).

Suppose \(u = [a,b]^T \) is a vector of \(\mathbb{R}^2 \). Then the length of \(u \) is:

\[
\sqrt{a^2 + b^2}
\]

Note that \(u \cdot u = a \cdot a + b \cdot b \). Hence the length is \(\sqrt{u \cdot u} \).

Definition. For any row or column vector \(u \), the length of \(u \) is \(||u|| = \sqrt{u \cdot u} \).

Note in the picture above, the distance between the heads of \(u \) and \(v \) is the length of \(u - v \). Hence, in general:

Definition. The distance between \(u \) and \(v \) is \(||u - v|| \).

- Find the distance between \(u = [1,2,3,4] \) and \(v = [4,3,2,1] \).

 Distance \(||u - v|| = ||[-3,-1,1,3]|| = \sqrt{(-3)^2 + (-1)^2 + 1^2 + 3^2} = \sqrt{20} = 2\sqrt{5} \)

Returning to the picture above, by the law of cosines we have:

\[
||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| \cdot ||v|| \cos \theta
\]

\[
\therefore (u - v) \cdot (u - v) = u \cdot u + v \cdot v - 2||u|| \cdot ||v|| \cos \theta
\]

\[
\therefore u^2 - 2u \cdot v + v^2 = u^2 + v^2 - 2||u|| \cdot ||v|| \cos \theta
\]

\[
\therefore -2u \cdot v = -2||u|| \cdot ||v|| \cos \theta
\]

\[
\therefore u \cdot v = ||u|| \cdot ||v|| \cos \theta
\]

\[
\therefore \cos \theta = \frac{u \cdot v}{||u|| \cdot ||v||}
\]

Theorem. The cosine of the angle between \(u \) and \(v \) is \(\frac{u \cdot v}{||u|| \cdot ||v||} \).

Two nonzero vectors \(u \) and \(v \) are perpendicular or orthogonal iff the angle between them is \(\pm \pi/2 \).

iff \(\cos \theta = 0 \) iff \(\frac{u \cdot v}{||u|| \cdot ||v||} = 0 \) iff \(u \cdot v = 0 \).

Definition. Vectors \(u \) and \(v \) are orthogonal iff \(u \cdot v = 0 \).

- Find \(a \) such that \(u = [a,2] \) is orthogonal to \(v = [-1,2] \).

 \(u \) is orthogonal to \(v \) iff \(u \cdot v = 0 \) if \(a(-1) + 2 \cdot 2 = 0 \) iff \(-a + 4 = 0 \) if \(a = 4 \). Answer: \(a = 4 \).

Definition. To vectors are in the same direction if one is a positive multiple of the other, they are in opposite directions if one is a negative multiple of the other, they are parallel if one is a nonzero multiple of the other iff they are in the same or opposite directions.

- Which pairs are in the same direction? are in opposite directions? are parallel? are orthogonal?

 \(x = [1,0,1], \ y = [2,0,2], \ z = [1,3,-1], \ w = [-2,-6,2] \).

 Same direction: \((x, y) \)

 Opposite direction: \((z, w) \)

 Parallel: \((x, y), (z, w) \)

 Orthogonal: \((x, z), (x, w), (y, z), (y, w) \).

Definition. \(u \) is a unit vector iff it has length 1 iff \(||u|| = 1 \).

For any \(u, u/||u|| \) is a unit vector in the same direction as \(u \).

- Find the unit vector in the direction of \(u = [1,1] \).

 \(u/||u|| = \frac{[1,1]}{\sqrt{1^2 + 1^2}} = \frac{[1,1]}{\sqrt{2}} = [\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}] \).

- Find \(c \) if \(c[-2] \) is in the same direction as \([-5,-10] \).

 If they are in the same direction, their components are proportional, e.g., \([a, b] = [ka, kb] \). Thus corresponding components have the same ratio, e.g., \(\frac{a}{ka} = \frac{b}{kb} = \frac{1}{k} \).

Hence \(c = \frac{-2}{-10} \cdot \ldots \cdot c = -1 \).

Resultants

Velocities and forces are vectors. The result of combining two velocities or two forces is usually the sum of the two vectors. If the velocity is \(v \), then \(||v|| \) is the speed. If \(v \) is a force, \(||v|| \) is the magnitude of the force.

- A plane heads flies at an airspeed of 500 mph with its nose pointed north. If there is a 20 mph wind blowing to the west, what is the plane’s resultant speed?

Identifying north with the y-axis and east with the x-axis, the plane’s velocity through the air is \([0, 500] \), the velocity of the wind is \([-20, 0] \). Hence the resultant velocity is \([0, 500] + [-20, 0] = [-20, 500] \). The resultant speed is \(||[-20, 500]|| = \sqrt{(-20)^2 + 500^2} = 20\sqrt{626} \).

On homework and tests, give exact answers such as the radical above, not decimal answers such as 500.3998.