Math 311 Lecture 20

Gram-Schmidt process orthonormalization

For easier reading, we again write \(u \cdot v \) instead of \((u, v) \).

Theorem. If \(\{v_1, v_2, ..., v_n\} \) is an orthonormal basis, then for any \(v \),

\[
 v = c_1 v_1 + c_2 v_2 + ... + c_n v_n \quad \text{where} \quad c_i = v \cdot v_i.
\]

Proof. \(\{v_1, v_2, ..., v_n\} \) orthonormal implies \(v_i \cdot v_j = 1 \) (they are unit vectors) and \(v_i \cdot v_k = 0 \) if \(i \neq k \) (they are orthogonal).

\[
 v = c_1 v_1 + +c_2 v_2 + ... + c_n v_n \quad \text{for some} \quad c_i \text{'s} \quad \text{(v's are a basis)}.
\]

\[
 v \cdot v = (c_1 v_1 + +c_2 v_2 + ... + c_n v_n) v = (c_1 v_1 v_i + +c_2 v_2 v_i + ... + c_n v_n v_i) = c_1^2 (v_1 v_1) + c_2^2 (v_2 v_2) + ... + c_n^2 (v_n v_n) = c_1^2 (0) + c_2^2 (0) + ... + c_n^2 (1) + ... + c_n^2 (0) = c_i.
\]

Hence for an orthonormal basis \(S = \{v_1, v_2, ..., v_n\} \), the coordinate vector \([v]_S \) is:

\[
 [v]_S = [c_1, c_2, ..., c_n]^T = [v \cdot v_1, v \cdot v_2, ..., v \cdot v_n]^T.
\]

If \(u \) and \(v \) are orthogonal i.e., \((u, v) = 0 \), then are \(u \) and \(cv \)

since \(u \cdot (cv) = c (u \cdot v) = c (0) = 0 \). Multiplying by a positive scalar does not change the direction or angle.

- **Given an orthogonal basis \(\{v_1, v_2\} = \{[\frac{1}{2}, \frac{1}{2}, 0], [0, 0, -5]\} \) for a subspace \(W \), find an orthogonal basis.

 Answer: \(\{[1, 1, 0], [0, 0, -1]\} \). Note, don't factor out -1.

For any vector \(v \), \(v / ||v|| \) is the unit vector in the same direction as \(v \). We say \(v \) normalizes to \(v / ||v|| \).

- **Given an orthogonal basis \(\{v_1, v_2\} = \{[\frac{1}{2}, \frac{1}{2}, 0], [0, 0, -5]\} \) for a subspace \(W \), find an orthonormal basis.

 First simplify to \(\{[1, 1, 0], [0, 0, -1]\} \) as above.

 Answer: \(\{[1, 1, 0], [0, 0, -1]\} \).

Lemma. If \(v \) is a unit vector and \(w \) any other vector, then

\[
 w = u + x \quad \text{where} \quad x = \text{component of} \ w \text{ in the same direction as} \ v = (w \cdot v) v.
\]

\[
 u = \text{component of} \ w \text{ orthogonal to} \ v = w - (w \cdot v) v.
\]

\[
 \cos \theta = (w \cdot v) / ||w|| ||v|| = (w \cdot v) / ||w|| \quad \text{since} \ ||v|| = 1.
\]

Using trigonometry, \(\cos \theta = ||w|| (w \cdot v) / ||w|| \).

\[
 \therefore ||x|| = ||w|| \cos \theta = ||w|| (w \cdot v) / ||w|| = w \cdot v.
\]

Since \(x \) points in the direction of \(v \) and has length \(w \cdot v \), \(x = (w \cdot v) v \).

Subtracting \(x \) from \(w \) gives \(u \) which is \(\perp \) to \(v \).

- **Find the component of \ w = [2, 3, 4] \ which is perpendicular to the unit vector \ v = [0, 0, 1].

 \(x = (w \cdot v) v = 4 v = [0, 0, 4] \) (component in the same direction)

 \(u = w - x = [2, 3, 4] - [0, 0, 4] = [2, 3, 0] \).

 Answer: \([2, 3, 0] \) is the component of \(w \perp \) to \(v \).

Gram-Schmidt orthonormalization process. Any basis \(\{w_1, w_2, ..., w_n\} \) for a subspace can be converted into an orthonormal basis \(\{u_1, u_2, ..., u_n\} \) as follows:

Let \(u_i = w_i / ||w_i|| \). Then for \(i = 1, 2, 3, ... \)

Let \(v_{i+1} = w_{i+1} - (w_{i+1} \cdot u_i) u_i - (w_{i+1} \cdot u_i) u_i - ... - (w_{i+1} \cdot u_i) u_i \)

Simplify \(v_{i+1} \) and let \(u_{i+1} = v_{i+1} / ||v_{i+1}|| \).

- **Orthonormalize the following basis for \(\mathbb{R}_3 \): \(\{w_1, w_2, w_3\} = \{[0, 0, 3], [2, 2, 2], [0, 1, 0]\} \).**

 First simplify to (scalar multiples have the same direction)

 \(\{w_1, w_2, w_3\} = \{[0, 0, 1], [1, 1, 1], [0, 1, 0]\} \)

 \(u_1 = w_1 / ||w_1|| = [0, 0, 1] / ||[0, 0, 1]|| = [0, 0, 1] / 1 = [0, 0, 1] \)

 \(v_2 = w_2 - (w_2 \cdot u_1) u_1 = [1, 1, 1] - ([1, 1, 1] \cdot [0, 0, 1]) [0, 0, 1] = [1, 1, 1] - [(1) [0, 0, 1] = [1, 1, 0] \)

 \(u_2 = v_2 / ||v_2|| = [1, 1, 0] / ||[1, 1, 0]|| = \frac{1}{\sqrt{2}} [1, 1, 0] \)

 \(v_3 = w_3 - (w_3 \cdot u_1) u_1 - (w_3 \cdot u_2) u_2 = [0, 1, 0] - ([0, 1, 0] \cdot [0, 0, 1]) [0, 0, 1] = [0, 1, 0] - ([0, 1, 0] \cdot \frac{1}{\sqrt{2}} [1, 1, 0]) = [0, 1, 0] - \frac{1}{\sqrt{2}}[1, 1, 0] = [0, 1, 0] - \frac{1}{\sqrt{2}}[1, 1, 0] = [-\frac{1}{2}, \frac{1}{2}, 0] \)

 Simplify to \(v_3 = [-1, 1, 0] \).

 \(u_3 = v_3 / ||v_3|| = [-1, 1, 0] / ||[-1, 1, 0]|| = \frac{1}{\sqrt{2}} [-1, 1, 0] \)

Hence the orthonormal basis is \(\{[0, 0, 1], \frac{1}{\sqrt{2}} [1, 1, 0], \frac{1}{\sqrt{2}} [-1, 1, 0]\} \)

Since this can be a long error-prone process, check the final basis vectors for orthogonality. Check:

\[
 [0, 0, 1] \cdot \frac{1}{\sqrt{2}} [1, 1, 0] = 0
\]

\[
 [0, 0, 1] \cdot \frac{1}{\sqrt{2}} [-1, 1, 0] = 0
\]

\[
 \frac{1}{\sqrt{2}} [1, 1, 0] \cdot \frac{1}{\sqrt{2}} [-1, 1, 0] = 0
\]

Applying the process to a dependent set will produce some zero vectors. Just delete them.

Theorem. In any inner product space, if \(U = \{u_1, u_2, ..., u_n\} \) is an orthonormal basis, then for any vectors \(v, w \) \((v, w) = [v]_U \cdot [w]_U \). That is, the inner product is just the usual dot product of the coordinate vectors with respect to the basis \(U \).

Proof. Omitted.

Hw 18 Answers

Page 198.

2(3). \([3, -8, -1]^T \) (a) \([3, -8, -1]^T \) (b) \([0, 0, 0]^T \) (c) \([4, 4, 8]^T \)

12(2). \(\frac{1}{\sqrt{2}} \sqrt{478} \)

14(2). \(\sqrt{150} = 5 \sqrt{6} \)

16(2). \(39 \)

18a(2). \(3x - 2y + 4z = -16 \)

20b(2). \(x = t, y = 1 - 2t, z = t \)

22(2). \(-\frac{17}{5}, \frac{38}{5}, -6 \)