Suppose \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) are the columns of \(\mathbf{A} \) and suppose \(X = [x_1, x_2, \ldots, x_n] \). Then \(\mathbf{A} = (\mathbf{v}_1 | \mathbf{v}_2 | \ldots | \mathbf{v}_n) \) and \(AX = (x_1 | x_2 | \ldots | x_n)^T \). Hence \(AX = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n \).

iff \(b = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n \)

iff \(b \) is a linear combination of the columns of \(\mathbf{A} \).

iff \(b \) is in the column space of \(\mathbf{A} \).

The least-squares solution for \(AX = b \) is the projection of \(b \) onto \(\mathbf{W} \).

This is the \textit{least-squares} solution, it is the best approximate solution of \(AX = b \).

We could find the least-squares solution by calculating \(\text{proj}_W b \) and then solving \(AX = \text{proj}_W b \). But there is an easier way.

The exact equation is \(A \T X = (A \T b) \).

The least-squares solution for \(AX = b \)

\[AX = \text{proj}_W b \text{ (by definition of “least-squares”) \} \}

\[b-AX = b - \text{proj}_W b \text{ is \perp to the column space of } A. \] revealing the closest point to \(b \) in \(\mathbf{W} \).

\[v_i \cdot (b-AX) = 0 \text{ for each column } v_i. \]

\[\begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{bmatrix} (b-AX) = \mathbf{0}. \]

\[\Rightarrow \begin{bmatrix} v_1^T \\ v_2^T \\ \vdots \\ v_n^T \end{bmatrix} = A \T (b-AX) = \mathbf{0}. \]

\[\Rightarrow A \T (b-AX) = \mathbf{0}. \]

\[\Rightarrow A \T b - A \T AX = \mathbf{0}. \]

\[\Rightarrow A \T AX = A \T b. \quad \text{exact equation} \]

To solve \(A \T AX = (A \T b) \), first find \(A \T b \) and \(A \T A \).

Least squares approximation

Note. For column vectors \(\mathbf{u}, \mathbf{v} \): the dot product \(\mathbf{v} \cdot \mathbf{u} = \) the matrix product \(\mathbf{v}^T \mathbf{u} \).

Let \(\mathbf{A} \) be a matrix.

Let \(\mathbf{W} = \) the column space of \(\mathbf{A} = \) the space spanned by the columns of \(\mathbf{A} \).

THEOREM. \(AX = b \) has a solution iff \(b \) is in the column space of \(\mathbf{A} \).

PROOF. Suppose \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \) are the columns of \(\mathbf{A} \) and suppose \(X = [x_1, x_2, \ldots, x_n] \).

\[AX = (x_1 | x_2 | \ldots | x_n)^T = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n. \]

Hence \(AX \)

iff \(b = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \ldots + x_n \mathbf{v}_n \)

iff \(b \) is a linear combination of the columns of \(\mathbf{A} \).

iff \(b \) is in the column space of \(\mathbf{A} \).

Suppose \(b \) is in the column space \(\mathbf{W} \) of \(\mathbf{A} \). Thus \(AX = b \) has no solution.

The error vector of an approximate solution to \(AX = b \) is the difference \(e = b - AX \) between the desired value \(b \) and approximate value \(AX \) found. The least-squares solution has the smallest error, i.e., \(||e|| \) is minimum.

Approximating functions

Suppose we know the values \(f(t_1), f(t_2), f(t_3) \) of an otherwise unknown function \(f(t) \). Suppose we wish to approximate it as a linear combination \(af_1(t) + bf_2(t) + cf_3(t) \) of three known functions \(f_1, f_2, f_3 \).

Thus we wish to find the \(X = [a, b, c]^T \) such that \(af_1(t_1) + bf_2(t_1) + cf_3(t_1) = f(t_1) \)

\[af_1(t_2) + bf_2(t_2) + cf_3(t_2) = f(t_2) \]

\[af_1(t_3) + bf_2(t_3) + cf_3(t_3) = f(t_3) \]

\[\vdots \]

\[af_1(t_n) + bf_2(t_n) + cf_3(t_n) = f(t_n) \]