Math 311 Lecture 26

Definition. Let \(L:V \to W \) be an isomorphism iff \(L \) is 1-1 and onto linear transformation. \(V \) is isomorphic to \(W \), \(V \cong W \), iff \(L:V \to W \) for some isomorphism \(L \).

- Let \(L:R^3 \to R_3 \) by \(L(a_1b + b_1c + c_1d) = [a, b, c, d] \). \(L \) is 1-1, onto and linear. Hence \(L \) is an isomorphism.
- \(R_3 \) and \(R^3 \) are isomorphic via the isomorphism \(L([a, b, c]) = [a, b, c] \).

More generally, for any \(n \)-dimensional vector space \(V \) with basis \(S \), the map \(L:V \to R^n \) defined by \(L(v) = [v]_S \) is an isomorphism.

Recall: A linear transformation \(L \) is 1-1 iff \(\ker L = \{0\} \).
A linear transformation is uniquely determined by its values (which may be set arbitrarily) on a basis.

Theorem. Any two \(n \)-dimensional vector spaces are isomorphic.

Proof. Suppose \(V \) and \(W \) are \(n \)-dimensional vector spaces. Let \(\{v_1, v_2, ..., v_n\} \) be a basis for \(V \) and let \(\{v_1, v_2, ..., v_n\} \) be a basis for \(W \).
Let \(L:V \to W \) be the linear transformation such that \(L(v_1) = v_2, L(v_2) = v_3, ..., L(v_n) = v_n \).
Onto: \(L \) is onto since the range of \(L \) includes \(\{v_1, v_2, ..., v_n\} \), which, being a basis, spans \(W \).
1-1: Suppose \(v \in \ker L \). Then \(v \) is a linear combination \(a_1v_1 + a_2v_2 + ... + a_nv_n \) of the basis elements \(\{v_1, v_2, ..., v_n\} \).
Thus \(v \in \ker L \Rightarrow L(v) = 0 \Rightarrow L(a_1v_1 + a_2v_2 + ... + a_nv_n) = 0 \Rightarrow a_1L(v_1) + a_2L(v_2) + ... + a_nL(v_n) = 0 \Rightarrow a_1w_1 + a_2w_2 + ... + a_nw_n = 0 \Rightarrow a_i = 0 \Rightarrow v = 0 \). Thus \(\ker L = \{0\} \) and hence \(L \) is 1-1.

Corollary. Every \(n \)-dimensional space is isomorphic to \(R^n \).

Theorem. For any vector spaces \(U, V, W \), \(\cong \) is is

- **Reflexive:** \(V \cong V \),
- **Symmetric:** \(V \cong W \Rightarrow W \cong V \),
- **Transitive:** \(U \cong V \) and \(V \cong W \) implies \(U \cong W \).

Proof. Reflexive: Let \(I:V \to V \) by \(I(v) = v \). This the identity isomorphism.
Symmetric: If \(L:V \to W \) is an isomorphism, then, since \(L \) is 1-1, it has an inverse \(L^{-1}:W \to V \) which is also an isomorphism.
Transitive: If \(K:U \to V \) and \(L:V \to W \) are isomorphisms between \(U \) and \(V \) and between \(V \) and \(W \), then \(L \circ K:U \to W \) is an isomorphism between \(U \) and \(W \). \(\square \)

Recall. If \(S \) and \(T \) are bases of a vector space \(V \) and \(P_{T \leftarrow S} \) is the transition matrix from \(S \) to \(T \), then for any \(v \in V \), \([v]_T = P_{T \leftarrow S}[v]_S \).

Change-of-basis Theorem. Suppose \(L:V \to W \) is a linear transformation. Suppose \(S \) and \(S' \) are bases for \(V \) and \(T \) and \(T' \) are bases for \(W \). Suppose \(L_{S,T} \) is the matrix for \(L \) w.r.t. \(S \) and \(T \). Suppose \(L_{S',T'} \) is the matrix for \(L \) w.r.t. \(S' \) and \(T' \). Then
\[
L_{S',T'} = P_{T' \leftarrow T} \cdot L_{S,T} \cdot P_{S' \leftarrow S}.
\]

Proof. Let \(V_S \) be the vector space of coordinate vectors \([v]_S \) w.r.t. the basis \(S \). Likewise for \(V_{S'}, W_T, W_{T'} \).

The following picture then makes the theorem clear.

![Diagram](image)

Suppose \(L:R_2 \to R_2 \) by \(L[x, y] = [y, x] \). Let \(U \) be the standard basis and \(T = \{(1,1), (0,1)\} \). Find \(L_{U,U}, L_{U,T}, L_{T,U}, L_{T,T} \).

First find the transition matrices \(P_{U \leftarrow T} \) and \(P_{T \leftarrow U} \).
\[
P_{U \leftarrow T} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad P_{T \leftarrow U} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix},
\]
\[
L_{U,U} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad L_{U,T} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},
\]
\[
L_{T,U} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \quad L_{T,T} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}.
\]

Page 289.

2(5). (a) \[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & 3 \\ 1 & 1 & 0 \end{bmatrix}
\]
2(5). (b) \[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 8 \\ 1 \\ 5 \end{bmatrix}
\]
10(5). (a) \[
\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} 1/2 & 1/2 \\ -3/2 \end{bmatrix}
\]
14(2). (a) \[
\begin{bmatrix} 5 & 13 \end{bmatrix} \quad \begin{bmatrix} -5 & -3 \end{bmatrix}
\]

Hw 25 Answers