Your calculator should give you x, y, r, s_x, and s_y. It may also give you a, b, and SS_x. If not, use their formulas.

Page 524. Don't use rounded answers in calculations, save to memory.

12.6 (9). You are given $n=5$ pairs of values for x and y.

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

$x = 0$
$s_x = 1.5811$
$ar{y} = 3$
$s_y = 2$
$n = 5$
$r = .94868$
$b = 1.2$
$a = 3$

Regression line: $y = a + bx$:
$y = 3 + 1.2x$

$SS_x = (n-1)(s_x)^2 = 10$

$MSE = (1 - r^2)(n-1)(s_y)^2/(n-2) = .5333$

- Estimate the std. dev. of the residual error ε: $s = \ldots$
- Find the percentage of variation in y which is determined by the least-squares line. $r^2 = \ldots \%$
- Find the confidence interval for the average value of y if $x = 1$.

 $df = \ldots$
 $t_{\alpha/2} = \ldots$

 $SE = \ldots$

 $(a+bx) \pm t_{\alpha/2}SE = (\ldots \pm \ldots)(\ldots)$

 $=[\ldots, \ldots]$

- Find the confidence interval for the measurement y if $x = 1$.

 $SE = \ldots$

 $(a+bx) \pm t_{\alpha/2}SE = (\ldots \pm \ldots)(\ldots)$

 $=[\ldots, \ldots]$

12.10 (9). A study was conducted to determine the effects of sleep deprivation on problem solving ability. Ten subjects participated in the study. Five levels of sleep deprivation were tested: 8, 12, 16, 20, and 24 hours without sleep. Two subjects were assigned to each level of sleep deprivation. After the sleep deprivation period each subject was given a set of addition problems and the number of errors recorded.

<table>
<thead>
<tr>
<th># Errors</th>
<th>8, 6</th>
<th>6, 10</th>
<th>8, 14</th>
<th>14, 12</th>
<th>16, 12</th>
</tr>
</thead>
<tbody>
<tr>
<td># Hours</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>

Clearly the hours x is the independent variable and the number of errors y is the dependent variable. The $n=10$ pairs of observations:
{(8,8),(8,6),(12,6),(12,10),(16,8),(16,14),(20,14),(20,12),(24,16),(24,12)}.

$x = 16$
$s_x = 5.9628$
$ar{y} = 10.6$
$s_y = 3.5340$
$n = 10$
$r = .8015$
$b = .475$
$a = 3$

Regression line: $y = a + bx$:
$y = 3 + .475x$

$SS_x = (n-1)(s_x)^2 = 320$

$MSE = (1 - r^2)(n-1)(s_y)^2/(n-2) = 5.025$

- Estimate the std. dev. of the residual error ε: $s = \ldots$
- Find the percentage of variation in y which is determined by the least-squares line.

 $r^2 = \ldots \%$
- Find the confidence interval for the average value of y if $x = 10$.

 $df = \ldots$
 $t_{\alpha/2} = \ldots$

 $SE = \ldots$

 $(a+bx) \pm t_{\alpha/2}SE = (\ldots \pm \ldots)(\ldots)$

 $=[\ldots, \ldots]$

- Find the confidence interval for the measurement y if $x = 10$.

 $SE = \ldots$

 $(a+bx) \pm t_{\alpha/2}SE = (\ldots \pm \ldots)(\ldots)$

 $=[\ldots, \ldots]$

- Find the confidence interval for the slope estimate b.

 $SE = \ldots$

 $b \pm t_{\alpha/2}SE = (\ldots \pm \ldots)(\ldots)$

 $=[\ldots, \ldots]$

Math 373 Hw 30 Name _________________________________ Score ______/ 18