1(4). Prove that the dual of the dual of a primal problem is equivalent to the primal problem for the example below.
Find the dual and then find the dual of the dual.
Here a, b, c, d, e, f, p, q are constants.

<table>
<thead>
<tr>
<th>PRIMAL</th>
<th>DUAL</th>
<th>DUAL OF DUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min $z = px + qy$</td>
<td>with r: $ax + by \leq e$</td>
<td>with s: $cx + dy \geq f$</td>
</tr>
<tr>
<td>$x, y \geq 0$</td>
<td></td>
<td>$x, y \geq 0$</td>
</tr>
</tbody>
</table>

2(6) Solve the primal, canonical and dual problem from the geometric representation of the primal problem.

<table>
<thead>
<tr>
<th>PRIMAL</th>
<th>CANONICAL</th>
<th>DUAL</th>
<th>OPTIMAL SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max $z = y$</td>
<td>max $z = y$</td>
<td>min $z =$</td>
<td>$z =$</td>
</tr>
<tr>
<td>r: $-x + y \leq 2$</td>
<td>r:</td>
<td>x:</td>
<td>when</td>
</tr>
<tr>
<td>s: $x + y \leq 6$</td>
<td>s:</td>
<td>y:</td>
<td>$y =$</td>
</tr>
<tr>
<td>t: $x - y \leq 2$</td>
<td>t:</td>
<td></td>
<td>slacks</td>
</tr>
<tr>
<td>$x, y \geq 0$</td>
<td></td>
<td></td>
<td>duals</td>
</tr>
</tbody>
</table>

Check: $z + x + y = 10$, total slacks = 4, total duals = 1

Draw in each of the three shifted lines $r+1$, $s+1$, $t+1$ which are needed to calculate the dual variables r, s, and t via the Marginal Value Theorem.

This is almost identical to Prob. 2 of Hw 10 except that you have to solve it geometrically.
1(4) You make lamps. You wish to maximize your profit.
Profit/lamp = $30. \quad x = \# \text{ of lamps you make per day.}
\[z = \text{total profit per day.} \quad w = \text{the dual variable.} \]
Max \# \text{ of lamps per day you can make} = 6.
A customer wishes to employ you to make 6 lamps a day.

\[
\begin{array}{c}
\text{PRIMAL} & \text{DUAL} \quad \text{(complete the dual problem)} \\
\text{max } z = 30x & \text{min } z' = \\
\text{with } w: x \leq 6 & \text{with } x: \quad \quad \\
x \geq 0 & \quad \quad \\
\end{array}
\]
\[
\text{max } z = 180 \text{ when } x = 6, \quad \text{min } z' = \quad \text{when } w = \quad .
\]

Give an economic interpretation of \(w \) and \(z' \) in terms of wages (circle the best interpretation or fill in “other”).

\[
\begin{array}{c}
w = \text{wage for one day’s work} \\
w = \text{wage charged for making one lamp} \\
\text{hourly wage} \\
\text{Other } \quad \quad \\
\end{array}
\]
\[
\begin{array}{c}
z' = \text{total wage} \\
\text{one day’s wage} \\
\text{one day’s profit} \\
\text{profit per lamp} \\
\text{Other } \quad \quad \\
\end{array}
\]

Give a marginal value interpretation of \(w \).

\[
w = \text{the amount of increase of } \quad \text{when } \quad \quad \\
\quad \quad \\
\]

Hint: check that the units of your economic interpretations are correct. Hence if the Marginal Value Theorem says \(w = \Delta z/\Delta b \) and \(z \) is in $ and \(b \) is in kg., then \(w \) should be in $/kg.

2(9) A coffee packer blends Brazilian coffee and Colombian coffee to prepare two products: Super and Deluxe brands.
- Each kilogram of Super coffee contains 0.5 kilogram of Brazilian coffee and 0.5 kilogram of Colombian coffee.
- Each kilogram of Deluxe coffee contains 0.25 kilogram of Brazilian coffee and 0.75 kilogram of Colombian coffee.
- The packer has 120 kilograms of Brazilian coffee and 160 kilograms of Colombian coffee on hand.
- The profit on each kilogram of Super coffee is 20 cents; the profit on each kilogram of Deluxe coffee is 30 cents.
- How many kilograms of each type of coffee should be blended to maximize profit?

Let \(s, d \) be the number kilograms of Super and Deluxe coffee; let \(P = \text{profit} \).
A coffee buyer wishes to buy all the packer’s coffee for \(T \) cents.
Let \(b, c \) be the slack variables in the primal problem.
Thus \(b = 120 - (.5s + .25d) \).

\[
\begin{array}{c}
\text{State the dual problem using variables } b \text{ and } c. \\
\text{PRIMAL} & \text{DUAL} \\
\text{max } P = 20s + 30d & \text{min } T = \\
\text{with } b: .5s + .25d \leq 120 & \text{with } s: \quad \quad \\
\text{c: } .5s + .75d \leq 160 & \quad \quad d: \quad \quad \\
\text{s, d} \geq 0 & \quad \quad b, c \geq 0 \\
\end{array}
\]

Find the primal slack variables. \(b = \quad \), \(c = \quad \).
Hint: of \(b \) and \(c \), one is a digit, one is a fraction.

Solve the dual problem.
\[
\text{min } T = \quad \text{when } b = \quad \text{, } c = \quad \text{.}
\]

Give an economic interpretation of the dual variable \(b \).
\(b = \quad \)

In the primal problem, if 160 is increased to 161,
\(P \) becomes \quad \quad .
In the primal problem, if 120 is reduced to 119,
\(P \) becomes \quad \quad .

The sum of the last two answers is 12840.