1 Primal problem. The same the region as in Hw 15.
max \(z = x + y \)
with
\[
\begin{align*}
 r: & \quad y \leq 2 \\
 s: & \quad x + y \leq 3 \\
 t: & \quad x \leq 2 \\
 x, y & \geq 0
\end{align*}
\]
Initial matrix

\[
\begin{array}{cccccc|c}
 x & y & r & s & t & b \\
\hline
 r & 0 & 1 & 1 & 0 & 0 & 2 \\
 s & 1 & 1 & 0 & 1 & 0 & 3 \\
 t & 1 & -1 & 0 & 0 & 1 & 2 \\
 & -1 & -1 & 0 & 0 & 0 & 0 \\
\end{array}
\]

(a) Shade the submatrices \(T \); complete the final tableau

(b) (c) (d)

\[
\begin{array}{cccccc|c}
 x & y & r & s & t & B \\
\hline
 0 & 1 & 1 & 0 & 0 & 2 \\
 1 & 0 & -1 & 1 & 0 & 3-p \\
 0 & 0 & 1 & -1 & 1 & p-1 \\
 & & & & & 3 \\
\end{array}
\]

(b) Suppose \(b_r = 2 \) is replaced by the variable \(p \). See columns (b). Write the optimal solution in terms of \(p \) and find the interval for which this solution is feasible.

max \(z = \) \quad at \(x = \) \quad, \(y = \) \quad
for \(p \in \) \quad. \quad Sum of integer endpoints = 4.

(c) Suppose \(b_s = 3 \) is replaced by the variable \(p \). Fill in columns (c). Write the optimal solution in terms of \(p \) and find the interval for which this solution is feasible.

max \(z = \) \quad at \(x = \) \quad, \(y = \) \quad
for \(p \in \) \quad. \quad Sum of integer endpoints = 6.

(d) Suppose \(b_t = 2 \) is replaced by the variable \(p \). Fill in columns (d). Write the optimal solution in terms of \(p \) and find the interval for which this solution is feasible.

max \(z = \) \quad at \(x = \) \quad, \(y = \) \quad
for \(p \in \) \quad. \quad Sum of integer endpoints = 1.

To find constant column sensitivity with LPSolve --

Enter and run the primal problem.
Click “Result/Sensitivity/Duals”
If the range of the constant \(b_r \) for constraint \(r \) is \(\{a, b\} \),
then in the row for constraint \(r \),
the “value” column gives the dual variable \(r \),
the “from” column gives \(a \) and
the “till” column gives \(b \).

value from till
\[
\begin{array}{rr}
 r & a & b \\
\end{array}
\]

Warning: LPSolve's solution for the previous problem is not the one given, changing max \(z = x + 1.1y \) tilts the objective in favor of the one given. Secondly, if the solution is not on a constraint bounday, LPSolve wrongly lists the interval as being all reals (-inf, inf).

To find objective coefficient sensitivity with LPSolve --

Enter and run the primal problem.
Click “Result/Sensitivity/Objective”
If the range of the objective coefficient \(c_x \) is \(\{a, b\} \),
then in the row for coefficient \(x \),
the “from” column gives \(a \) and
the “till” column gives \(b \).
Ignore “from value” and “till value” columns.

2 Solve using LPSolve.
max \(z = y \) with
\[
\begin{align*}
 r: & \quad -x + y \leq 2 \\
 s: & \quad x + y \leq 6 \\
 t: & \quad x - y \leq 2 \\
 x, y & \geq 0
\end{align*}
\]
Optimal solution. max \(z=4 \) when \(x=2, y=4 \).

Find the intervals for which this solution is feasible.
(a) \(b_r = 2 \) is replaced by the variable \(p \). \(p \in \)
Sum of integer endpoints = 4.
(b) \(b_s = 6 \) is replaced by \(p \). \(p \in \)
Sum of integer endpoints = 2.

Find the intervals for which this solution is optimal.
(c) \(c_x = 0 \) is replaced by the variable \(p \). \(p \in \)
Sum of integer endpoints = 0.
(d) \(c_y = 1 \) is replaced by \(p \). \(p \in \)
Primal problem for problems 3, 4, 5.

\[
\text{max } z = \ldots
\]

with

\[
\begin{align*}
 r: & -x + y \leq 1 \\
 s: & x \leq 1 \\
 & x, y \geq 0
\end{align*}
\]

3(__/3) Sketch the region of feasible solutions. For each extreme, draw lines to indicate the pie-shaped sector of objective coefficient vectors for which it is optimal. One segment has been partially done for you.

For problems 4 and 5, suppose the objective function is

\[
\text{max } z = x + y.
\]

Then the final tableau is

\[
\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
\hline
1 & y & 1 & 1 & 1 & 2 \\
1 & x & 1 & 0 & 0 & 1 \\
1 & z & 0 & 0 & 1 & 2 \\
\hline
\end{array}
\]

with solution max \(z = 3 \) at \(x=1, y=2 \).

4(__/3) What is the range for \(c_x = 1 \leftrightarrow p \) such that \(x=1, y=2 \) remains optimal? Fill in the blanks, then give the answer.

\[
\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
\hline
1 & y & 1 & 1 & 1 & 2 \\
1 & x & 1 & 0 & 0 & 1 \\
1 & z & 0 & 0 & 1 & 2 \\
\hline
\end{array}
\]

The solution is optimal

\[
\text{iff}
\]

\[
\text{iff}
\]

Answer. The range is \(c_x = p \in \)

5(__/3) What is the range for \(c_y = 1 \leftrightarrow p \) such that \(x=1, y=2 \) remains optimal? Fill in the blanks, then give the answer.

\[
\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
\hline
1 & y & 1 & 1 & 1 & 2 \\
1 & x & 1 & 0 & 0 & 1 \\
1 & z & 0 & 0 & 1 & 2 \\
\hline
\end{array}
\]

The solution is optimal

\[
\text{iff}
\]

\[
\text{iff}
\]

Answer. The range is \(c_y = p \in \)